Ketigasinar istimewa ini diperoleh dari penerapan hukum pemantulan cahaya "Hukum Snellius". Persamaan bayangan pada cermin cekung, juga berlaku pada cermin cembung. Namun karena fokus cermin cembung letaknya di belakang cermin, maka jarak fokusnya bernilai negatif. Rumus hubungan antara jarak benda dan jarak bayangan dengan jarak fokus

Apa kegiatan olahraga kesukaan elo? Kalau gue, dulu suka banget berenang. Soalnya, gue dan teman-teman lainnya sering berenang sambil main game gitu. Eits, game yang dimaksud di sini bukan semacam Mobile Legends, ya. Game yang gue dan teman-teman mainkan pas berenang itu beragam banget, salah satunya main lempar koin ke dalam kolam. Jadi, gue bakal menyiapkan satu buah uang koin yang akan dilempar ke kolam renang. Setelah koinnya dilempar, gue dan teman-teman bakal mulai berenang ke dasar kolam buat mencari koin tersebut. Uniknya, dulu gue pernah tenggelam pas lagi nyari uang koin tersebut. Kok, bisa? Soalnya, pas gue lagi melempar uang koinnya ke kolam renang, kolam itu kelihatan dangkal banget. Apalagi, uang koinnya bisa cepat sampai ke dasar kolamnya. Jadi, gue semakin berpikir kalau kolamnya dangkal. Dengan rasa percaya diri kalau kolamnya dangkal, gue langsung terjun aja buat cari koinnya, tuh. Voila! Ternyata, kolamnya itu cukup dalam untuk tinggi badan gue yang pada saat itu cuma 120-an centimeter. Ya … akhirnya gue tenggelam dan dibantuin sama teman-teman buat keluar dari kolamnya, deh. Konyol dan malu-maluin banget, kan? Padahal, gue lihat dengan kepala mata gue sendiri kalau koinnya itu masuk ke kolam yang dangkal banget lho, dari daratan. Kenapa kedalamannya bisa berbeda pas gue udah nyebur ke kolam, ya? Hmm … pas gue cari tahu, ternyata ini ada hubungannya sama pembiasan cahaya. Ini juga yang bikin mata gue “siwer” untuk membedakan kedalaman kolam. Memang, apa itu pembiasan cahaya? Kok, bisa bikin kolam renang jadi terlihat dangkal dari area daratan? Nah, gue punya pembahasan lengkapnya, lho. Yuk, kita bahas bareng-bareng di sini! Apa Itu Pembiasan Cahaya?Rumus Pembiasan CahayaContoh Pembiasan Cahaya dalam Kehidupan Sehari-hariContoh Soal Pembiasan CahayaKesimpulan Apa Itu Pembiasan Cahaya? First thing first, apa itu pembiasan cahaya? Pengalaman gue soal kolam renang itu kan, ngomongin media air, ya. Terus, apa hubungannya sama cahaya? Ternyata, ada salah satu sifat cahaya yang menyebabkan gue mengira si kolam renang itu dangkal airnya. Kalau dalam ilmu Fisika, nama sifatnya yaitu pembiasan. Jadi, pengertian pembiasan cahaya adalah cahaya yang dibelokkan saat melewati media yang berbeda. Contohnya kayak gimana, sih? Biar lebih kebayang sama elo, gue punya salah satu gambar cahaya dapat dibiaskan, nih. Gambarannya ini pas banget sama proses pembiasan cahaya melalui pengalaman gue di atas tentang kedalaman kolam renang. Gambar cahaya dapat dibiaskan melalui ilustrasi pembiasan cahaya di kolam renang Arsip Zenius Nah, itu dia gambar cahaya dapat dibiaskan melalui media kolam renang. Berdasarkan ilustrasi pembiasan tersebut, ilmu fisika pun mengenalkan adanya Hukum 1 Snellius. Bunyi Hukum 1 Snellius ini menyatakan kalau sinar datang, sinar bias, dan sumbu normal pada proses pembiasan cahaya berada pada satu bidang yang datar. Ternyata, prasangka gue tentang kolam yang dangkal itu dikarenakan sifat sinar matahari yang masuk ke kolam tersebut akan langsung dibelokkan. Soalnya, hal itu merupakan salah satu peristiwa atau proses pembiasan cahaya. Namun kira-kira, apa yang menyebabkan terjadinya pembiasan cahaya, ya? Jawabannya simpel banget. Penyebabnya itu dari media atau medium yang dilewati cahaya. Jadi, cahaya akan dibiaskan jika melewati dua medium yang kerapatannya berbeda. Contohnya balik lagi kayak yang kolam renang itu, deh. Si cahaya ini kan bersinar melewati dua media, ya. Pertama, media udara. Kedua, media air. Nah, kedua media tersebut punya kerapatan yang berbeda. Makanya, pas cahaya masuk ke media kedua air terjadi lah pembelokan. Soalnya, media air ini lebih rapat daripada udara. Berarti kalau medianya cuma satu, nggak bakal ada pembelokan, dong? Benar banget! Pembiasan cahaya bisa terjadi karena ada dua media dengan kerapatan yang berbeda. Sampai sini, semoga elo jadi lebih paham sama konsep pembiasan cahaya, ya. Intinya, elo hanya perlu ingat kalau ada dua media dalam proses pembiasan cahaya. Baca Juga Mengenal Konsep Gelombang Cahaya – Materi Fisika Kelas 11 Terus, gimana rumus pembiasan cahaya? Elo bisa menentukan rumus pembiasan cahaya lewat persamaan di bawah ini. Rumus pembiasan cahaya Arsip Zenius Biar penggunaan rumus pembiasan cahaya bisa terbayang di benak elo, gue coba kasih contoh pembahasan soalnya, ya. Misalnya, ada seberkas cahaya dari udara dengan indeks bias 1. Lalu, dibiaskan menuju suatu medium dengan indeks bias 1,5. Jika besar sudut datangnya adalah 30o, maka nilai sinus dari sudut biasnya …. Nah, gini pembahasannya. Jadi, indeks bias medium sinar datangnya kan 1. Terus, indeks bias medium sinar biasnya kan 1,5. Elo hanya perlu memasukkan angka-angka tersebut melalui rumus pembiasan cahaya yang saja. Jadi, 1. sin 30 = 1,5. sin r Nah, jawabannya jadi ⅓, deh. Pokoknya, elo bisa menggunakan rumus pembiasan cahaya itu dengan cara memasukkan setiap angka yang sudah diketahui dari soal, ya. Baca Juga Hukum Pemantulan Cahaya Beserta Rumus dan Sifatnya – Materi Fisika Kelas 11 Contoh Pembiasan Cahaya dalam Kehidupan Sehari-hari Proses pembiasan cahaya ini hanya terjadi dalam ilmu fisika aja nggak, sih? Eits, ini dia menariknya! Sadar ataupun nggak sadar, proses pembiasan cahaya ini terjadi dalam kehidupan sehari-hari, lho. Hayo … elo tahu nggak, contoh peristiwa pembiasan cahaya dalam kehidupan sehari-hari? Gue mau ngajak elo untuk bereksperimen, nih. Coba deh, elo isi sebuah gelas dengan air sebanyak setengah permukaannya. Terus, coba elo masukin benda kayak pensil atau sedotan ke dalam gelas tersebut. Nah, kalau elo lihat bentuk pensil atau sedotannya dari luar gelas, pasti strukturnya jadi bengkok. Iya, kan? Itu dia salah satu contoh peristiwa pembiasan cahaya dalam kehidupan sehari-hari. Contoh lainnya yaitu pelangi. Lho, memangnya pelangi termasuk ke pembiasan cahaya? Iya. Contoh peristiwa pembiasan cahaya pada pelangi Arsip Zenius Makanya, pelangi merupakan peristiwa pembiasan cahaya matahari oleh droplet air hujan. Selain contoh-contoh di atas, elo juga bisa praktik sendiri dengan menggunakan alat peraga pembiasan cahaya, lho. Dengan begitu, elo bisa melihat dengan jelas bagaimana cahaya bisa membias kepada dua medium yang berbeda. Ternyata, ilmu pembiasan cahaya dalam Fisika ini erat sama kehidupan sehari-hari kita, ya? Menarik banget, deh. Sampai sini, semoga elo makin tercerahkan dengan teori pembiasan cahaya, ya. Kalau masih ada yang membingungkan, nggak perlu khawatir. Gue punya pilihan video pembelajaran tentang materi ini yang dijelasin langsung sama tutor Zenius yang kece abis. Elo bisa langsung nonton videonya dengan cara klik link di bawah ini, ya! Contoh Soal Pembiasan Cahaya Itu dia pembahasan kita hari ini mengenai pembiasan cahaya dalam ilmu fisika. Lewat beberapa teori di atas, gue harap elo bisa mengerjakan soal di bawah ini, ya. Contoh Soal 1 Pernyataan berikut yang benar mengenai pembiasan adalah…. 1 cepat rambat sinar bias sama dengan cepat rambat sinar datang 2 terjadi pembelokan arah rambat cahaya 3 sudut bias selalu sama dengan sudut datang 4 terjadi jika cahaya merambat melalui dua medium yang berbeda A. 1, 2, dan 3 B. 1 dan 3 C. 2 dan 4 D. 4 saja Jawaban Pernyataan 1 salah karena cepat rambat sinar datang dan cepat rambat sinar bias akan berbeda apabila mediumnya berbeda. Yang tetap sama adalah frekuensinya, bukan cepat rambatnya. Pernyataan 3 salah, karena sudut bias tidak selalu sama dengan sudut datangnya, bisa jadi lebih besar atau lebih kecil dari sudut datangnya, tergantung indeks bias. Maka dari itu, pernyataan yang benar adalah 2 dan 4. Jadi, jawabannya yaitu C. Contoh Soal 2 Seberkas cahaya diarahkan menuju kaca tebal dengan sudut datang 30° terhadap garis normal. Jika cepat rambat cahaya di udara adalah 3 × 108 m/s dan cepat rambat cahaya pada kaca adalah 2 × 108 m/s, maka sudut biasnya adalah ….bulatkan hingga tempat satuan A. 16o B. 17o C. 18o D. 19o Jawaban Jadi, kita kumpulkan dulu semua informasi yang sudah diketahui dari soal di atas. Diketahui v cepat rambat cahaya di kaca = i sudut cahaya yang datang ke kaca = 30o c cepat rambat cahaya di udara = indeks bias udara = Maka, r sudut biasnya yaitu …. Kita akan memakai rumus sin r = . sin i sin r = sin r = r= 19o Jadi, jawabannya yaitu D. Contoh Soal 3 Pada proses pembiasan, besaran parameter cahaya yang dideskripsikan berikut berubah, KECUALI …. A. kecepatan rambat B. panjang gelombang C. frekuensi f D. semua parameter di atas berubah seiring cahaya bergerak dari satu medium ke medium lain yang kerapatannya berbeda Jawaban Alasan dibalik nilai frekuensi cahaya yang tidak berubah sesungguhnya berlandaskan ide bahwa energi dari gelombang cahaya E hanya dipengaruhi berbanding lurus . Jadi, hanya frekuensinya saja yang nggak berubah seperti bagian lainnya. Maka dari itu, jawaban yang paling tepat dari pertanyaan di atas yaitu C. Baca Juga Pengertian Interferensi Cahaya Beserta Rumus dan Contohnya – Materi Fisika Kelas 11 Kesimpulan Nggak susah kan, pembahasan materi tentang pembiasan cahaya? Intinya, elo hanya perlu menggarisbawahi kalau proses pembiasan cahaya ini bisa terjadi saat cahaya melewati dua media dengan kerapatan yang berbeda, ya. Oh iya, elo sudah mengerjakan contoh soal pembiasan cahaya di atas belum, nih? Lumayan banget lho, buat melatih dan mengasah kemampuan elo. Selain ngelatih lewat tiga contoh soal di atas, gue mau nyaranin elo buat latihan ngerjain soal lewat try out bareng Zenius, nih. Latihan try out-nya gratis! Elo cuma perlu daftar dengan cara klik link di bawah ini. Latihan Try Out Bareng Zenius Sebelum ngerjain latihan try out di atas, gimana kalau gue coba kasih tips buat elo belajar Fisika, nih? Tipsnya ini eksklusif dari Sabda, lho. Penasaran? Tonton video di bawah ini, ya!
Selamatbelajar semoga sukses. 1. Berikut ini merupakan sifat-sifat cahaya, kecuali . 2. Nyala lilin tidak tampak jika dilihat dengan pipa bengkok, hal ini menunjukkan bahwa cahaya . 3. Apabila sumber cahaya kecil, akan terbentuk bayang-bayang inti yang disebut . 4. Terjadinya bayang-bayang benda akibat .
Assalamu'alaikum Wr. Wb. Selamat datang di blog Artikel & Materi . Senang sekali rasanya kali ini dapat kami bagikan materi lengkap Fisika Pembiasan Cahaya Refraksi . Mari kita bahas selengkapnya.. PEMBIASAN CAHAYA Pengertian Pembiasan refraksi cahaya adalah pembelokan arah rambat cahaya. Pembiasan cahaya disebabkan medium zat Perantara yang dilalui cahaya berbeda kerapatam optiknya yang menyebabkan kecepatan cahaya pada medium itu berbeda pula. Contoh Pembiasan Cahaya Cahaya dari udara ke kaca, dari air ke kaca, dari udara ke air, dan sebagainya kelihatan bengkok/membelok. Alat yang digunakan untuk menyelidiki pembiasan cahaya adalah cakra optik. Hukum Snellius pada pembiasan Cahaya menyatakan a. Sinar datang, garis normal, dan sinar bias terletak pada satu bidang datar b. Sinar datang dari medium kurang rapat ke medium yang rapat dibiaskan mendekati garis normal c. Sinar datang dari medium rapat ke medium yang kurang rapat dibiaskan menjahui garis normal d. Sinar datang yang tegak lurus dengan bidang batas tidak dibiaskan, melainkan diteruskan. pembiasan cahaya INDEKS BIAS Indeks bias mutlak adalah perbandingan antara cepat rambat cahaya dalam ruang hampa dan cepat rambat cahaya dalam medium lain. Indeks bias medium yang rapat itu lebih besar dari indeks bias medium yang kurang rapat. Sebaliknya indeks bias medium kurang rapat itu lebih kecil dari indeks bias medium yang rapat. Indeks Bias mutlak dirumuskan Contoh Seberkas cahaya merambat dari udara ke dalam air. Bila diketahui indeks bias udara n udara 1,00 , dan indeks bias aiar n air 1,33, dan cepat rambat cahaya dalam ruang hampa c 3 x 108 m/s. tentukan kecepatan rambat cahaya dalam udara dan dalam air ! Penyelesaian Diketahui n udara = 1,00 N air = 1,33 C = 3 x 108 m/s Ditanya a. C udara ? b. C air ? PEMBIASAN PADA PRISMA Prisma adalah benda bening yang dibatasi oleh dua bidang permukaan yang bersudut. Besarnya sudut antara kedua permukaan itu disebut sudut pembias b. Apabila seberkas cahaya masuk pada salah satu permukaan prisma maka cahaya tersebut akan dibiaskan dari permukaan prisma yang lain. Sudut deviasi adalah sudut yang diperoleh dari perpanjangan sinar datang dan sinar bias yang keluar dari prisma. Besarnya sudut Deviasi berubah-ubah bergantung pada sudut datang i. Sudut deviasi dirumuskan D = I + r1 -b LENSA Pengertian Lensa Lensa adalah benda bening yang dibatasi oleh dua bidang yang dua-duanya lengkung atau salah satunya adalah bidang datar. Macam-macam Lensa Berdasarkan bentuk permukaannya lensa dibedakan menjadi Lensa cembung dua bikonveks Lensa cembung datar plankonveks Lensa cembung cekung konveks konkaf Lensa cekung dua bikonkaf Lensa cekung datar plankonkaf Lensa cembung cekung kankaf konveks LENSA CEMBUNG Lensa cembung adalah lensa yang bagian tengahnya lebih tebal daripada bagian tepinya dan bersifat konvergen mengumpulkan cahaya Bila seberkas sinar sejajar sumbu utama menuju lensa cembung maka akan dibiaskan melalu satu titik yang disebut titik api utama titik fokus Sinar-sinar istimewa lensa cembung Sinar datang yang sejajar dengan sumbu utama dibiaskan melalui titik fokus utama F2. Sinar datang yang melalui titik fokus F1 dibiaskan sejajar dengan sumbu utama. Sinar datang yang melalui pusat optik lensa tidak dibiaskan melainkan diteruskan. Pembentukan bayangan pada lensa cembung Pembentukan berada di F1, bayangan tidak terjadi. Benda berada diantara F1 dan 2F1, bayangan terbentuk di atas 2F2 sifatnya nyata, terbalik, dan diperbesar. Benda berada di F1 dan O, bayangan di atas 2F1 sifatnya, maya tegak, dan diperbesar. Banda berada tepat di 2F1, maka bayangan terbentuk tepat di 2F2 sifatnya nyata, terbalik, dan sama besar. Benda berada di atas 2 F1 maka bayangannya akan berada di antara F2 dan 2F2 sifatnya nyata, terbalik, dan diperkecil. Lensa Cekung Lensa cekung adalah lensa yang bagian tengahnya lebih tipis daripada bagian tepinya dan bersifat menyebarkan berkas cahaya divergen. Sinar-sinar istimewa lensa cekung Sinar datang yang sejajar dengan sumbu utama keluar dari lensa seolah-olah berasal dari titik fokus utama F2 Sinar datang yang menuju titik fokus utama F1 dibiaskan sejajar dengan sumbu utama. Sinar datang yang melalui pusat optik lensa tidak dibiaskan melainkan diteruskan. Dispersi cahaya adalah penguraian cahaya polikromatik menjadi cahaya monokromatik. Cahaya Polikromatik adalah cahaya yang terdiri dari bermacam-macam warna. Contohnya cahaya putih. Chaya Monokromatik adalah cahaya yang hanya memiliki satu panjang gelombang saja Tidak dapat terurai menjadi cahaya lain Contoh sinar Merah, Sinar jingga, Sinar Kuning, Sinar hijau, Sinar biru, dan sinar Ungu. Dispersi Cahaya Pada Prisma Artikel terkait Cahaya Materi Fisika Lengkap Pembiasan Cahaya Materi Fisika Lengkap Alat Optik Pengertian, Jenis, Macam, dan Gambar Sumber Demikian materi lengkap Fisika Pembiasan Cahaya Refraksi meliputi Pengertian dan contoh pembiasan cahaya, indeks bias, pembiasan pada prisma, lensa cembung dan lensa cekung serta dispersi cahaya. Semoga bermanfaat... 1 tan i p = √ 3. i p = 60°. Soal ini jawabannya E. Contoh soal 2. Jika terjadi polarisasi pada pemantulan sinar oleh suatu permukaan batas medium tembus cahaya, maka . Sudut antara berkas sinar jatuh dan berkas sinar pantul 90°. Sudut pantul 57°. Sinar sudut jatuh adalah kebalikan dari indeks bias.
Cahaya yang menimbulkan pembiasan. - Kids, apakah kamu tahu peristiwa pembiasan cahaya? Refraksi atau pembiasan cahaya didefinisikan sebagai perubahan arah rambat partikel cahaya akibat terjadinya suatu percepatan. Peristiwa ini terjadi pada optika era optik geometris dengan refraksi cahaya yang dijabarkan dengan hukum snellius. Baca Juga Proses Bagaimana Terbentuknya Sebuah Bayangan dan Sifat-Sifat yang Dimunculkannya, Sudah Tahu? Hukum snellius sendiri adalah proses terjadinya bayangan secara bersamaan dengan refleksi gelombang pada cahaya. Tumbukan antara gelombang cahaya menyebabkan kecepatan fase gelombang cahaya akan berubah seketika. Lalu, apa saja contoh peristiwa pembiasan cahaya? Penasaran, kan? Yuk, simak ulasannya! Contoh Peristiwa Pembiasan Cahaya dalam Kehidupan Sehari-Hari 1. Berlian yang Tampak Berkilau Pixabay Berlian yang mengkilap adalahsalah satu contoh pembiasan cahaya. Cahaya yang menyinari berlian akan mengalami serangkaian proses pembiasan oleh permukaan permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang cukup besar dan sudut kritis berlian yang kecil sehingga menyebabkan mereka akan tampak berkilau. Baca Juga Daftar 5 Negara Tertinggi di Dunia, Salah Satunya Jadi Sumber Berlian 2. Sedotan yang Tampak Bengkok dalam Gelas Berisi Air Pixabay Sedotan yang bengkok dalam gelas berair adalah salah satu contoh pembiasan cahaya. Sedotan yang bagiannya masuk di dalam gelas berisi air akan terlihat bengkok jika dilihat dari luar. Hal ini terjadi karena cahaya yang datang dari udara kurang rapat berjalan menuju air lebih rapat akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini pun terjadi di dalam gelas tersebut. Hal ini yang mengakitbatkan sedotan dalam gelas berair akan tampak bengkok karena enggak berada di titik sebenarnya garis normal. 3. Dasar Kolam yang Tampak Dangkal Pixabay Kolam renang yang terlihat dangkal adalah salah satu contoh pembiasan cahaya. Dasar kolam akan tampak seolah dangkal jika dilihat dari permukaan daratan, Kids. Hal ini disebabkan karena cahaya yang datang dari udara kurang rapat menuju air lebih rapat dan akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini akan berlangsung di dalam kolam renang tersebut. Baca Juga Unik dan Langka! Berjarak 800 Tahun Cahaya dari Bumi, Ilmuwan Temukan Dua Planet Raksasa Menari Bersama Hal ini menyebabkan seolah dasar kolam akan terlihat dangkal karena terjadi pembiasan akibat bayangan dasar kolam bukan bentuk yang sesungguhnya. Nah, itu dia, Kids, contoh peristiwa pembiasan cahaya dalam kehidupan sehari-hari. Semoga bermanfaat! - Teman-teman, kalau ingin tahu lebih banyak tentang sains, dongeng fantasi, cerita misteri, dan pengetahuan seru, langsung saja berlangganan majalah Bobo dan Mombi SD. Tinggal klik di Artikel ini merupakan bagian dari Parapuan Parapuan adalah ruang aktualisasi diri perempuan untuk mencapai mimpinya. PROMOTED CONTENT Video Pilihan
Pembiasanialah suatu peristiwa pembelokan arah rambat cahaya, cahaya merambat dengan melalui 2 zat yang memiliki kerapatan yang berbeda. Apabila terdapat sebuah cahaya yang datang yang berasal dari zat yang memiliki kerapatan yang kurang menuju ke zat yang memiliki kerapatan yang lebih, maka cahaya itu akan dibiaskan mendekati sebuah garis normal.
Pembiasan cahaya adalah – Mungkin kalian pernah mengetahui sekilas penjelasan tentang pembiasan cahaya. Biasanya ketika sekolah dahulu, pembelajaran materi tentang pembiasan cahaya memang diajarkan. Pelangi menjadi salah satu contoh peristiwa alam yang bisa terjadi dari hasil pembiasan cahaya. Secara mudahnya pembiasan cahaya adalah suatu peristiwa pembelokan arah cahaya ketika melewati dua zat atau medium. Yang mana ketika proses tersebut terjadi terdapat pula kecepatan optic cahaya yang berbeda. Pembiasan cahaya bisa terjadi juga dipengaruhi oleh kecepatan cahaya ketika memasuki medium yang berbeda. Karena hal tersebutlah bisa membuat suatu kecepatan cahaya berubah dan menyebabkan gelombang cahaya menjadi berbelok. Cahaya yang tadinya di udara akan masuk ke air dan bisa membuat cahaya tersebut menjadi membelok. Peristiwa pembelokan cahaya yang memasuki medium berbeda ini kerap disebut dengan istilah pembiasan atau refleksi. Masih banyak hal menarik lain seputar pembiasan cahaya. Nah bagi kalian yang ingin tahu lebih dalam lagi tentang pembiasan cahaya. Bisa banget nih baca ulasan seputar pembiasan cahaya yang ada di dalam artikel ini. Pengertian Pembiasan CahayaSifat-sifat Cahaya1. Cahaya Merambat Menurut Garis Lurus2. Cahaya Dapat Merambat Menembus Benda Bening3. Cahaya Dapat Dipantulkan4. Cahaya Dapat DibelokkanSifat Pembiasan Cahaya1. Pembiasan Cahaya dari Zat Renggang ke Zat Rapat2. Pembiasan Cahaya dari Zat Rapat ke Zat RenggangPenyebab Terjadinya Pembiasan CahayaIndeks Bias CahayaHukum Pembiasan CahayaPenerapan Pembiasan Cahaya dalam Kehidupan1. Pemantulan Sempurna2. Pensil atau Sedotan yang Terlihat Patah3. Air Laut Terlihat Dangkal4. Pembiasan Pada LensaPembiasan Cahaya Pada Lensa1. Lensa Cembung atau Lensa Positif2. Lensa CekungKategori Ilmu BiologiMateri IPABuku TerkaitMateri Terkait Fisika Sumber Hal pertama yang akan kita pelajari bersama adalah pengertian dari pembiasan cahaya. Sebelumnya memang sudah dijelaskan secara singkat tentang apa itu pembiasan cahaya. Namun pada poin ini akan dijelaskan lebih dalam lagi apa yang dimaksud dengan pembiasan cahaya. Pembiasan adalah peristiwa pembelokan arah rambat cahaya yang bisa terjadi ketika cahaya yang melewati suatu bidang batas antara dua medium yang berbeda. Peristiwa pembiasan bisa terjadi ketika ada sinar datang dan membentuk suatu sudut tertentu cahaya datang tidak tegak lurus terhadap bidang batas atau sudut datang lebih kecil dari 900 terhadap bidang batas. Sedangkan untuk cahaya sendiri merupakan suatu gelombang elektromagnetik yang merambat lurus ke segala arah dengan kecepatan 3 x 108 m/s dan memiliki panjang gelombang sekitar 380 hingga 750 nm. Pada bidang fisika, cahaya merupakan suatu paket partikel yang disebut dengan istilah foton. Dari dua penjelasan tersebut bisa ditarik suatu pengertian jika pembiasan cahaya adalah suatu proses pembelokan cahaya ketika berkas cahaya tersebut melewati bidang batas dua medium yang berbeda indeks biasnya. Indeks bias suatu bahan merupakan perbandingan kecepatan cahaya yang ada di dalam ruang hampa dengan kecepatan cahaya di bahan tersebut. Sedangkan untuk indeks bias relatif merupakan perbandingan indeks bias dua medium yang berbeda. Indeks bias relatif medium kedua terhadap medium pertama merupakan perbandingan indeks bias antara medium kedua dengan indeks bias medium pertama. Adanya pembiasan cahaya tersebut bisa menyebabkan kedalaman yang semu serta pemantulan yang sempurna. Sifat-sifat Cahaya Suatu cahaya juga memiliki sifat berdasarkan arah rambatnya. Beberapa sifat yang dimiliki oleh cahaya bisa kalian baca selengkapnya di bawah ini. 1. Cahaya Merambat Menurut Garis Lurus Matahari merupakan sumber cahaya terbesar yang ada di bumi. Yang mana matahari memiliki pancaran sinar lurus. Karena adanya rambatan cahaya dari matahari ke bumi bisa mengakibatkan peristiwa siang dan malam. Sedangkan untuk contoh peristiwa nyata terjadinya proses cahaya merambat menurut garis lurus adalah adanya gerhana matahari dan gerhana bulan. Dimana sinar matahari yang dihalangi oleh bulan bisa membuat sebagian bumi mengalami sisi gelap. 2. Cahaya Dapat Merambat Menembus Benda Bening Benda yang memiliki sifat bening atau transparan bisa ditembus oleh cahaya. Benda yang memiliki partikel tak berwarna atau transparan dapat dirambati oleh cahaya dengan lebih mudah. Hal ini terjadi karena benda bening atau transparan bisa dengan mudah melakukan meneruskan cahaya yang datang. Contohnya adalah peristiwa cahaya menembus kaca bening jendela. Di mana kaca jendela tersebut tidak bisa menghalangi datangnya cahaya matahari dan bisa langsung masuk ke dalam rumah. Bahkan kita bisa melihat ke area luar jendela kaca karena pada dasarnya cahaya masih bisa merambat masuk ke luar kaca bening dan dapat tertangkap oleh mata kita. 3. Cahaya Dapat Dipantulkan Cahaya dapat dipantulkan dengan cara pemantulan atau terpancarnya kembali cahaya dari bagian permukaan benda yang sebelumnya terkena cahaya. Sifat pemantulan yang dimiliki oleh cahaya ini bisa dibagi menjadi dua yaitu pemantulan teratur dan pemantulan baur atau difus. Pada proses pemantulan teratur, berkas cahaya akan melakukan pemantulan secara sejajar. Hal ini seperti ketika kalian bermain pada siang hari dengan membawa cermin yang digunakan untuk memantulkan cahaya. Saat kalian mengarahkan cermin ke arah datangnya cahaya. Maka cahaya bisa dipantulkan ke segala arah dari cahaya yang dipantulkan. Sedangkan untuk pemantulan baur atau difus merupakan suatu peristiwa pemantulan cahaya yang terjadi pada permukaan yang tidak rata. Sebagai contohnya adalah pemantulan cahaya pada air, batu, pohon, aspal dan sepatu. Cermin juga memiliki sifat refleksi cahaya akan dibagi menjadi beberapa jenis yaitu cermin datar, cermin cembung dan cermin cekung. 4. Cahaya Dapat Dibelokkan Cahaya dapat dibiaskan ketika cahaya mengalami pergerakan miring melalui medium yang berbeda kondisi kepadatannya. Contohnya adalah cahaya dari udara kemudian akan melewati air. Karena hal tersebutlah cahaya akan mengalami pembiasan dan pembelokan dalam medium tersebut. Sifat cahaya yang bisa dibiaskan atau dibelokkan juga banyak dimanfaatkan dalam berbagai macam alat optik. Contohnya adalah ketika kalian melihat kolam tampak dangkal karena memiliki air yang jernih, padahal kolam tersebut bisa saja memiliki kedalaman yang lebih dalam daripada yang kalian lihat di atas permukaan. Itulah beberapa sifat yang dimiliki oleh cahaya. Selain empat sifat yang dijelaskan di atas, cahaya juga masih memiliki beberapa sifat lainnya. Sifat Pembiasan Cahaya Setelah mengetahui sifat cahaya secara umum. Berikutnya adalah tentang beberapa sifat dalam pembiasan cahaya yang bisa kalian baca selengkapnya di bawah ini. 1. Pembiasan Cahaya dari Zat Renggang ke Zat Rapat Sifat yang pertama adalah pembiasan cahaya dari zat renggang ke zat rapat. Dimana hal tersebut bisa terjadi pada saat cahaya dibiaskan dari udara ke air. Udara merupakan medium yang lebih renggang dibandingkan dengan air, sehingga cahaya akan dibiaskan hingga mendekati garis normal. 2. Pembiasan Cahaya dari Zat Rapat ke Zat Renggang Sifat yang berikutnya adalah pembiasan cahaya dari zat rapat ke zat renggang. Kondisi ini bisa terjadi ketika cahaya dibiaskan dari kaca ke air. Kaca memiliki medium yang lebih rapat jika dibandingkan dengan air. Oleh sebab itu cahaya akan dibiaskan hingga menjauhi garis normal. Itulah dua sifat pembiasan cahaya yang bisa kalian baca selengkapnya. Penyebab Terjadinya Pembiasan Cahaya Pembiasan cahaya merupakan peristiwa perubahan arah rambat cahaya ketika berpindah dari satu medium lain yang memiliki kerapatan optic yang berbeda. Penyebab terjadinya pembiasan cahaya akan dibagi menjadi dua jenis. Dua jenis penyebab terjadinya cahaya adalah sebagai berikut. Ketika sinar datang dari medium yang memiliki kerapatan lebih renggang menuju ke medium yang lebih rapat, maka sinar yang datang tersebut akan dibiaskan mendekati garis normal. Contohnya adalah ketika sinar datang melalui medium udara menuju ke air. Ketika sinar datang dari medium yang lebih rapat menuju ke medium yang lebih renggang maka sinar yang datang akan dibiaskan hingga menjauhi garis normal. Contohnya adalah ketika sinar datang melalui medium air menuju ke udara. Indeks Bias Cahaya Pembiasan cahaya bisa terjadi karena perbedaan laju cahaya pada kedua medium yang digunakan. Laju cahaya pada medium yang lebih kecil dibandingkan dengan laju cahaya pada medium yang kurang rapat. Secara matematis dapat dirumuskan menjadi sebagai berikut ini. Berikut penjabarannya N = indeks bias C = laju cahaya dalam ruang hampa 3 x 108 m/s V = laju cahaya dalam zat Indeks bias tidak pernah lebih kecil dari 1 artinya, n ³1 Hukum Pembiasan Cahaya Pada sekitar tahun 1621 ada seorang ilmuwan Belanda bernama Willebrord Snell melakukan sebuah eksperimen untuk mencari hubungan antara sudut datang dengan sudut bias. Adapun hasil yang didapatkan dari eksperimen tersebut disebut dengan hukum snell seperti pada penjelasan di bawah ini. Sinar datang, garis normal serta sinar bias akan terletak pada satu bidang datar. Hasil bagi sinus sudut datang dengan sinus sudut bias adalah bilangan tetap atau bisa disebut dengan indeks bias. Jika dilihat secara matematis, hasil bagi sudut datang dan sudut bias akan dinyatakan sebagai berikut. Dimana i adalah sudut datang dan r adalah sudut bias Penerapan Pembiasan Cahaya dalam Kehidupan Dalam kehidupan sehari-hari ada beberapa peristiwa pembiasan cahaya. Apa saja penerapan pembiasan cahaya dalam kehidupan sehari-hari? Berikut ini adalah penjelasan selengkapnya akan hal tersebut. 1. Pemantulan Sempurna Pemantulan sempurna bisa terjadi jika seberkas cahaya datang dari medium rapat atau indeks bias besar menuju ke medium kurang rapat atau indeks bias kecil. Syarat terjadinya pemantulan sempurna adalah sudut datang harus lebih besar daripada sudut kritis atau sudut datang yang bisa menghasilkan sudut bias 90 derajat. Pemantulan sempurna ini biasanya dimanfaatkan dalam proses pembuatan serta optic. Serat optik adalah jenis kabel yang memiliki daya transmisi yang begitu tinggi. 2. Pensil atau Sedotan yang Terlihat Patah Mungkin kalian pernah melakukan eksperimen secara pribadi menggunakan bahan pensil atau sedotan dan air. Dimana ketika pensil atau sedotan dimasukkan ke dalam air yang ada di sebuah gelas akan tampak seperti patah. Hal ini bisa terjadi karena disebabkan oleh adanya perbedaan medium yang dilalui oleh cahaya. 3. Air Laut Terlihat Dangkal Jika kalian pernah ke pantai, mungkin kalian juga pernah melihat air laut yang begitu dangkal dan ingin berenang di dalamnya. Padahal air laut tersebut tidaklah dangkal. Air laut yang bisa terlihat dangkal tersebut tak lain karena adanya cahaya yang melewati dua medium yang berbeda yaitu dari udara ke air. Prinsip yang digunakan hampir sama dengan eksperimen pensil yang seolah terlihat patah ketika dimasukkan ke dalam air. 4. Pembiasan Pada Lensa Lensa memang memiliki banyak manfaat pada kehidupan ini. Misalnya adalah lensa dapat digunakan pada kacamata, teropong, lup dan juga mikroskop. Tahukah kalian jika lensa yang biasa digunakan untuk melihat benda dari luar batas kemampuan mata manusia adalah karena adanya pembiasan cahaya yang masuk ke dalamnya. Indeks bias antar medium lensa dan udara memang telah berbeda. Karena hal tersebutlah lensa bisa membiaskan cahaya yang masuk ke dalamnya. Contohnya adalah bagi mereka yang menderita rabun jauh atau rabun dekat. Setelah memakai kacamata, mereka akan bisa lebih mudah melihat pada jarak normal. Hal ini tak lain karena adanya banyakan yang dibentuk oleh benda tetap jatuh pada retina. Itulah beberapa penerapan pembiasan cahaya dalam kehidupan sehari-hari. Mungkin setelah membaca beberapa contoh penerapan cahaya seperti di atas, kalian jadi lebih mudah tahu apa saja bentuk pembiasan cahaya dalam kehidupan sehari-hari. Pembiasan Cahaya Pada Lensa Sumber Lensa adalah benda bening yang dibentuk sedemikian rupa agar bisa membiaskan atau meneruskan hampir seluruh cahaya yang melaluinya. Saat ini ada dua jenis lensa yang bisa kalian temukan dengan mudah yaitu lensa cembung atau lensa positif dan lensa cekung atau lensa negatif. Dua jenis lensa tersebut bisa kalian baca secara lebih lengkap pada ulasan di bawah ini. 1. Lensa Cembung atau Lensa Positif Lensa cembung bisa juga disebut dengan istilah lensa konvergen atau lensa positif. Yang mana lensa cembung memiliki bagian tengah yang lebih tebal daripada bagian ujungnya. Lensa cembung juga dibagi menjadi tiga jenis lensa seperti pada penjelasan di bawah ini. Lensa cembung ganda atau bikonveks yaitu lensa dengan kedua permukaannya memiliki bentuk cembung. Lensa cembung datar atau plankonveks yaitu lensa yang memiliki satu bentuk lensa cembung dan satu bentuk lesan datar. Lensa cembung cekung atau konkaf konveks yaitu lensa dengan bentuk permukaan satu cembung dan satu cekung. Perlu diketahui jika lensa cembung memiliki sifat seperti lensa cekung. Maka dari itu bayangan yang dibentuknya pun akan hampir sama dengan lensa cekung. Untuk penjelasan lebih lanjut tentang hal tersebut adalah sebagai berikut ini. Sumber Bayangan nyata terjadi dari perpotongan sinar bias yang berkumpul. Bayangan nyata pada lensa cembung terjadi ketika benda terletak pada ruang II dan III. Bayangan maya bisa terjadi dari perpotongan perpanjangan sinar bisa yang divergen atau menyebar. Bayangan maya pada lensa cembung bisa terjadi jika terletak pada ruang I. 2. Lensa Cekung Lensa cekung juga bisa disebut sebagai lensa divergen atau lensa negatif. Dimana lensa cekung merupakan sebuah lensa yang memiliki bagian tengah lebih tipis dibandingkan dengan bagian ujungnya. Perlu diketahui juga jika lensa cekung memiliki suatu sifat yang disebut dengan divergen atau mampu menyebarkan cahaya. Pembentukan bayangan yang ada pada lensa cekung memiliki titik api atau fokus yang dinyatakan dengan negatif. Sama dengan lensa cembung, lensa cekung juga dibagi menjadi tiga jenis lensa. Tiga jenis lensa pada lensa cekung adalah sebagai berikut ini. Sumber Lensa cekung ganda atau bikonkaf yaitu lensa dengan kedua permukaan berbentuk cekung. Lensa cekung datar atau plankonkaf yaitu lensa dengan bentuk permukaan yang satu cekung dan yang satunya lagi datar. Lensa cekung cembung atau konveks konkaf yaitu lensa dengan bentuk permukaan satu cekung dan satunya berbentuk cembung. Adapun sinar istimewa yang dihasilkan oleh lensa cekung adalah sebagai berikut. Sinar datang sejajar sumbu utama lensa akan dibiaskan seakan-akan berasal dari titik fokus aktif F1. Sinar akan datang seakan-akan menuju ke titik fokus pasif F2 akan dibiaskan sejajar dengan sumbu utama. Sinar akan datang menuju ke titik pusat optic O diteruskan tanpa pembiasan. Itulah rangkuman tentang pembiasan cahaya. Grameds bisa membaca buku-buku terkait Fisika dengan mengunjungi agar kamu memiliki informasi LebihDenganMembaca. Penulis Hendrik Sumber BACA JUGA ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien GambarPelangi Sirkular. Salah satu lokasi yang baik untuk melihat 'moonbows benar' adalah Waimea 'Kamuela', Hawaii Island, Hawaii. Akan tetapi pada fenomena bentuknya pelangi terbalik tersebut bukan pelangi yang dibentuk dari pembiasan cahaya melalui tetesan air hujan melainkan pelangi terbalik tersebut dibentuk dari pembiasaan

Pernahkah kalian menggunakan kaca pembesar, kamera, atau mikroskop? Jika pernah, berarti kalian pernah menggunakan lensa untuk membentuk bayangan. Lensa adalah benda bening yang membiaskan cahaya. Kebanyakan lensa terbuat dari kaca atau plastik dengan dua permukaan. Lensa mempunyai dua permukaan lengkung atau satu permukaan lengkung dan satu permukaan datar. Seperti halnya cermin lengkung, berdasarkan bentuknya, lensa dibedakan atas lensa cembung dan lensa cekung. Nah pada kesempatan kali ini kita akan belajar mengenai pembiasan cahaya pada lensa cembung. Tahukah kalian apa itu lensa cembung? Bagiamana proses pembentukan bayangan pada lensa cembung? Untuk menjawab pertanyaan tersebut, silahkan kalian simak penjelasan berikut ini. Pengertian Lensa Cembung Lensa cembung adalah lensa dengan bagian tengah lebih tebal daripada bagian tepi. Cahaya yang jatuh pada permukaan lensa cembung akan mengalami pembiasan. Berkas-berkas sinar datang akan dibiaskan sehingga berkas-berkas sinar biasnya mengumpul. Bagian lensa yang tebal akan menghambat cahaya lebih banyak daripada bagian lensa yang tipis. Oleh karena cepat rambat cahaya di dalam lensa lebih kecil daripada di udara, maka berkas-berkas sinar bias akan mengumpul. Itulah sebabnya lensa cembung bersifat konvergen. Dari gambar di atas, sinar-sinar cahaya yang datang sejajar sumbu utama lensa dibiaskan menuju titik fokus. Sinar-sinar tersebut mengumpul pada titik fokus, sehingga sinar-sinar itu bisa membentuk bayangan nyata yang dapat diproyeksikan pada layar. Besar pembiasan cahaya pada suatu lensa bergantung pada indeks bias bahan lensa dan kelengkungan permukaan lensa, sedangkan indeks bias bergantung pada cepat rambat cahaya dalam bahan lensa tersebut. Lensa cembung yang tebal akan membiaskan cahaya lebih besar daripada lensa cembung tipis. Ini berarti bahwa panjang fokus lensa cembung tebal lebih pendek daripada panjang fokus lensa cembung tipis. Pada lensa cembung, titik fokus tempat berpotongan sinar-sinar bias selalu berada di bagian belakang lensa cembung maka fokus lensa cembung adalah fokus sejati, sehingga jarak fokus lensa cembung selalu bertanda positif. Oleh karena itu, lensa cembung disebut juga lensa positif. Macam-Macam Lensa Cembung Lensa cembung dibedakan menjadi tiga macam, yaitu lensa dobel cembung/cembung ganda bikonveks, lensa cembung-datar plan-konveks, dan lensa cembung cekung konveks-konkaf. Untuk memahami ketiga jenis lensa tersebut, perhatikan gambar di bawah ini. Lensa Bikonveks merupakan lensa yang berbentuk cembung pada kedua permukaannya. Lensa Plan-konveks adalah lensa cembung yang dibatasi oleh satu bidang datar dan satu bidang cembung. Lensa Konveks-Konkaf merupakan lensa yang dibatasi oleh satu bidang cembung dan satu bidang cekung. Bagian-Bagian Lensa Cembung Sebelum kalian dapat memahami bagaimana proses pembentukan bayangan pada lensa cembung atau lensa konveks, kalian perlu mengetahui bagian-bagian penting pada lensa ini. Lensa cembung memiliki bagian-bagian seperti yang ditunjukkan pada gambar berikut ini. Keterangan P1 dan P2 = Titik pusat bidang lengkung lensa P1P2 = Sumbu utama lensa R1 dan R2 = Jari-jari kelengkungan permukaan lensa O = Pusat optik lensa OP1 dan OP2 = Jari-jari kelengkungan R F1 dan F2 = Titik api titik fokus lensa OF1 dan OF2 = Jarak fokus lensa f Pada gambar di atas, titik F disebut titik fokus. Berbeda dengan cermin cembung, titik fokus pada lensa cembung ada dua, yaitu fokus di depan lensa F2 dan fokus di belakang lensa F1. Titik fokus F1 disebut fokus utama atau fokus aktif. Sedangkan F2 disebut fokus pasif. Titik fokus aktif adalah titik fokus tempat sinar-sinar dibiaskan sedangkan titik fokus lainnya ditetapkan sebagai fokus pasif. Fokus aktif dan fokus pasif simetri terhadap lensa. Ketika kalian menghadapkan lensa cembung ke arah matahari, maka di belakang lensa di atas tanah akan tampak sebuah titik terang. Dengan menggeser lensa naik turun, kalian akan mendapatkan titik yang paling terang dan tampak silau. Titik tersebut merupakan titik fokus lensa. Jika titik tersebut jatuh di atas kertas atau kapas benda yang mudah terbakar kertas atau kapas tersebut dapat terbakar. Sementara titik P1 dan P2 pada gambar bagian-bagian lensa cembung di atas dinamakan titik kelengkungan lensa dan jarak OP1 atau OP2 disebut jari-jari kelengkungan lensa atau R. Seperti halnya pada cermin, pada lensa juga berlaku hubungan R = 2f. Titik O disebut sebagai titik pusat lensa. Sinar-Sinar Istimewa Lensa Cembung Untuk melukis pembentukan bayangan pada lensa cembung, maka dapat digunakan sinar-sinar istimewa. Lalu tahukah kalian apa saja sinar-sinar istimewa pada lensa cembung ini? Terdapat 4 macam sinar istimewa pada lensa cembung seperti yang ditunjukkan pada gambar berikut ini. Sinar istimewa 1 Sinar datang sejajar sumbu utama akan dibiaskan melalui titik fokus F1 di belakang lensa. Sinar istimewa 2 Sinar datang menuju titik fokus di depan lensa F2 akan dibiaskan sejajar sumbu utama. Sinar istimewa 3 Sinar yang datang melewati pusat optik lensa O akan tidak dibiaskan melainkan diteruskan. Sinar istimewa 4 Sinar datang dengan arah sembarang dibiaskan melalui titik fokus tambahan FT di belakang lensa. FT adalah titik perpotongan garis sejajar sinar datang yang melewati pusat optik lensa dengan garis tegak lurus yang ditarik dari titik fokus F1. Pembentukan dan Sifat Bayangan pada Lensa Cembung Nah, dengan menggunakan dua dari empat sinar istimewa di atas, kita dapat melukiskan pembentukan bayangan pada lensa cembung. Dalam melukiskan pembentukan bayangan pada lensa cembung, kita dapat menggambarkan lensa dengan simbol berikut. Untuk mempermudah pembentukan bayangan, ruang di depan dan di belakang lensa dibagi menjadi beberapa ruangan seperti yang ditunjukkan pada gambar berikut ini. Keterangan I, II, III, dan IV adalah nomor ruang benda sedangkan I, II, III dan IV adalah nomor ruang bayangan. Setiap lensa memiliki dua buah titik fokus di sebelah kiri dan kanannya. Jarak kedua fokus tersebut sama. Adapun langkah-langkah dalam menggambarkan proses pembentukan bayangan pada lensa cembung adalah sebagai berikut. a Posisikan benda di depan lensa cembung, misalkan di ruang III, yaitu ruang di antara titik P2 sampai tak hingga ~ b Lukis dua buah sinar istimewa pada lensa cembung. c Sinar selalu datang dari permukaan lensa dan dibiaskan ke belakang lensa. d Perpotongan antara dua sinar bias merupakan letak bayangan. Jika perpotongan didapat dari perpanjangan sinar bias, bayangan bersifat maya dan dilukiskan dengan garis putus-putus. e Dari gambar pembentukan bayangan di atas, bayangan terbentuk dari perpotongan langsung sinar bias sehingga bayangan tersebut bersifat nyata. Karena posisi terbalik dan ukuran lebih kecil, maka bayangan juga bersifat terbalik dan diperkecil. Jadi kesimpulannya adalah ketika benda berada di ruang III lensa cembung, maka sifat bayangan yang dihasilkan adalah nyata, terbalik dan diperkecil. Letak dan sifat bayangan yang dibentuk oleh lensa cembung bergantung pada letak benda. Sebuah objek yang diletakkan di depan sebuah lensa cembung akan memiliki bayangan dengan sifat tertentu. Misalnya, apabila benda berada di ruang II, maka bayangan terletak di ruang III dan bersifat nyata, terbalik dan diperbesar. Sedangkan apabila benda berada di ruang III, maka bayangan terletak di ruang II dan bersifat nyata, terbalik dan diperbesar. Sifat-sifat bayangan ketika benda terletak di ruang I, II, III, titik fokus, dan di titik pusat kelengkungan lensa beserta gambar dan contoh soal dapat kalian temukan dalam artikel tentang 5 Macam Sifat Bayangan Pada Cermin Cekung dan Cara Menentukannya. Rumus pada Lensa Cembung Sama halnya dengan cermin cekung, pada lensa cembung, jumlah nomor ruang benda dengan nomor ruang bayangan sama dengan lima. Secara matematis, rumus nomor ruang benda dan bayangan pada lensa cembung adalah sebagai berikut. Nomor ruang benda + nomor ruang bayangan = V Pada lensa cembung, hubungan antara jarak benda s dan jarak bayangan s’ akan menghasilkan jarak fokus f. Hubungan tersebut secara matematis dapat ditulis sebagai berikut. 1 = 1 + 1 f s s' 2 = 1 + 1 R s s' Keterangan s = jarak benda s’ = jarak bayangan f = jarak fokus R = jari-jari lensa Sementara perbesaran bayangan M dapat dicari melalui perbandingan antara tinggi bayangan dengan tinggi benda atau jarak bayangan dengan jarak benda yang dirumuskan sebagai berikut. Keterangan M = perbesaran bayangan h' = tinggi bayangan h = tinggi benda s’ = jarak bayangan s = jarak benda Pada lensa cembung, makin kecil jarak titik fokusnya, maka makin kuat lensa tersebut memancarkan sinar. Hal ini berarti bahwa kekuatan lensa berbanding terbalik dengan jarak titik fokusnya. Secara matematis, kekuatan lensa dirumuskan sebagai berikut. Keterangan P = kekuatan lensa dioptri = D f = jarak fokus m Catatan kekuatan lensa dinyatakan dalam dioptri bila jarak fokus dinyatakan dalam satuan meter. Oleh karena itu, sebelum menentukan kekuatan lensa, terlebih dahulu kalian harus mengonversi satuan jarak fokus ke meter m. Contoh Soal dan Pembahasan Sebuah benda dengan tinggi 3 cm berada pada jarak 10 cm dari lensa cembung yang mempunyai jarak fokus 6 cm. a. Gambarkan pembentukan bayangan yang terjadi. b. Bagaimanakah sifat bayangannya? c. Tentukan tinggi benda. Penyelesaian Diketahui h = 3 cm s = 10 cm f = 6 cm Ditanyakan a. Lukisan bayangan b. Sifat bayangan c. h’ Jawab a. Lukisan pembentukan bayangan Jarak fokus lensa adalah 6 cm sehingga jari-jari kelengkungan lensa adalah 2 kali jarak fokus, yaitu R = 2 × f = 2 × 6 = 12 cm Dengan demikian, jarak benda lebih besar dari jarak fokus dan lebih kecil dari jari-jari lensa, dapat kita tuliskan sebagai berikut. R > s > f Jadi, benda terletak di ruang II di antara F2 dan P2. Lukisan pembentukan bayangan dari benda tersebut ditunjukkan pada gambar berikut ini. b. Sifat bayangan Berdasarkan gambar pembentukan bayangan di atas, maka sifat bayangan yang terbentuk adalah nyata, terbalik, dan diperbesar. c. Tinggi bayangan h’ Untuk menentukan tinggi bayangan, kita terlebih dahulu mencari jarak bayangan s’ dengan menggunakan rumus berikut. 1/f = 1/s + 1/s’ 1/6 = 1/10 + 1/s’ 1/s’ = 1/6 – 1/10 1/s’ = 5/30 – 3/30 1/s’ = 2/30 s' = 30/2 s’ = 15 cm Kemudian, dengan menggunakan rumus perbesaran bayangan, maka tinggi bayangan adalah sebagai berikut. h'/h = s’/s h’ = s’/s × h h’ = 15/10 × 3 h’ = 45/10 h’ = 4,5 cm Jadi, tinggi bayangan benda adalah 4,5 cm.

ApakahCahaya itu? Cahaya menurut Newton (1642-1727) terdiri dari partikel-partilkel ringan berukuran sangat kecil yang dipancarkan oleh sumbernya ke segala arah dengan kecepatan yang sangat tinggi. Sementara menurut Huygens (1629-1695), cahaya adalah gelombang seperti bunyi. Perbedaan antara keduanya hanya pada frekuewensi dan panjang gelombang saja.. Dua pendapat di atas sepertinya saling

Pembiasan cahaya atau disebut juga difraksi adalah suatu peristiwa pembelokan arah rambat cahaya ketika melewati batas antara dua medium yang berbeda kerapatan optiknya. Pembiasan cahaya terjadi akibat kecepatan cahaya berbeda pada setiap medium. Kerapatan optik suatu medium dinyatakan sebagai indeks bias. Semakin besar indeks bias suatu medium, maka kerapatannya semakin besar pula. Oleh karena itu, jika seberkas cahaya melalui suatu medium yang indeks biasnya besar, maka akan semakin besar pula cahaya tersebut dibelokkan atau dibiaskan. Nah pada kesempatan kali ini, kita akan belajar mengenai contoh-contoh fenomena dalam kehidupan sehari-hari yang berhubungan dengan peristiwa pembiasan serta penjelasan secara fisika bagaimana proses terjadinya fenomena tersebut. Kita akan membicarakan empat fenomena fisika antara lain peristiwa terjadinya fatamorgana, pembentukan bayangan pada periskop, dasar kolam yang tampak lebih dangkal, dan posisi benda-benda langit yang tidak pada tempat sebenarnya. Berikut ini penjelasannya. 1. Peristiwa terjadinya fatamorgana Fatamorgana merupakan sebuah istilah kepada suatu hal yang bersifat khayal yang tidak mungkin dapat dapat dicapai. Karena memang peristiwa ini diambil dari gejala optik yang menyebabkan suatu permukaan yang sangat panas atau memiliki suhu panas, tampak berkilat seperti ketika melihat permukaan air. Fenomena fatamorgana biasanya terjadi di tanah atau bidang yang luas dan panjang seperti jalan aspal, padang pasir atau padang es. Sebagai contoh, pada waktu siang hari yang panas terik ketika kita sedang berada di pinggir jalan raya beraspal, kita memandang jauh ke jalan raya ternyata terlihat seperti ada air di atas aspal. Kemudian setelah kita dekati ternyata air tersebut tidak ada. Mengapa hal ini bisa terjadi? Bagaimana penjelasannya secara fisika? Simak penjelasan berikut. Pada siang hari yang panas, cahaya matahari mengenai aspal sehingga permukaan aspal menjadi sangat panas. Karena aspal menjadi panas, maka lapisan udara yang dekat dengan permukaan aspal menjadi panas juga sehingga kerapatan optiknya menjadi lebih kecil renggang, kita sebut saja lapisan udara dingin. Sementara itu, lapisan udara yang letaknya beberapa centimeter di atas lapisan udara panas tersebut memiliki kerapatan optik yang lebih besar rapat, kita sebut saja lapisan udara panas. Pada pembiasan cahaya, jika sinar datang dari medium lebih rapat menuju medium kurang rapat renggang maka cahaya akan dibiaskan menjauhi garis normal. Perhatikan gambar di atas, sinar 1 datang dari lapisan udara dingin menuju lapisan udara panas maka dibiaskan menjauhi garis normal. Hal ini karena kerapatan optik lapisan udara dingin lebih besar daripada lapisan udara panas. Kemudian sinar 2 datang dengan sudut datang lebih besar lagi sehingga sinar dibiaskan sejajar dengan bidang batas antara lapisan udara dingin dan udara panas. Sudut datang sinar 2 ini merupakan sudut kritis, yaitu sudut datang yang menghasilkan sudut bias sebesar 90°. Kemudian sinar 3 datang dengan sudut yang datang yang lebih besar lagi dari sudut kritis sinar 2, sehingga sinar tidak lagi dibiaskan melainkan dipantulkan. Peristiwa ini dinamakan pemantulan sempurna. Apabila semakin banyak sinar datang seperti sinar 3, maka akan semakin banyak sinar yang dipantulkan secara sempurna. Kemudian dari perpotongan perpanjangan sinar-sinar pantul yang banyak tersebut akan menghasilkan suatu bayangan semu yang banyak jumlahnya dan akan terlihat seperti air. Jadi, sebenarnya, fatamorgana terjadi karena peristiwa pemantulan cahaya bukan pembiasan cahaya. Namun, untuk dapat menjelaskan peristiwa pemantulan sempurna kita perlu menggunakan konsep pembiasan cahaya. 2. Peristiwa pembentukan bayangan pada periskop Periskop adalah alat optik yang berfungsi untuk mengamati benda dalam jarak jauh atau berada dalam sudut tertentu. Bentuknya sederhana, yaitu berupa tabung yang dilengkapi dengan prisma pada ujung-ujungnya. Prisma ini akan memantulkan cahaya yang datang sejajar padanya, kemudian diatur sedemikian rupa sehingga membentuk sudut 45° terhadap sumbu tabung. Periskop digunakan pada tank kapal selam. Para navigator kapal selam memanfaatkan periskop untuk mengamati gerak-gerik yang terjadi di atas permukaan laut. Lalu bagaimana cara kerja periskop ini? Apakah ada keterkaitan dengan konsep pembiasan cahaya? Prinsip kerja periskop ini menggunakan konsep pemantulan sempurna. Proses pemantulan sempurna terjadi pada prisma yang digunakan sebagai alat optik untuk menangkap dan memantulkan cahaya. Prisma ini berjumlah dua buah yang disusun membentuk sudut 45°. Perhatikan gambar berikut. Ketika kita melihat ujung bawah periskop, sinar sejajar dari objek masuk lewat ujung atas mengenai prisma optik. Kemudian prisma tersebut akan memantulkan secara sempurna sinar dari objek tersebut membentuk sudut 45° ke arah prisma optik kedua. Kemudian sinar pantul dari prisma pertama tadi akan dipantulkan kembali 45° oleh prisma kedua menuju mata kita. Dengan demikian, kita dapat melihat objek tersebut. 3. Peristiwa dasar kolam yang tampak dangkal Jika kalian pernah memperhatikan kolam renang yang airnya jernih, maka akan tampak bahwa dasar kolam tersebut tampak dangkal. Namun jika kita menceburkan diri ke dalam kolam tersebut yang terjadi adalah dasar kolam ternyata tidak sedangkal yang kita lihat ketika berada di darat. Kenapa hal ini bisa terjadi? Bagaimana penjelasannya secara fisika? Pembiasan merupakan peristiwa pembelokan arah rambat cahaya karena melalui dua medium yang berbeda kerapatan optiknya di mana medium tersebut haruslah benda bening. Air jernih termasuk benda bening, sehingga pada air juga dapat terjadi peristiwa pembiasan. Ketika kita melihat dasar kolam, cahaya dari dasar kolam menuju mata kita. Ketika melewati permukaan air, cahaya akan dibelokkan menjauhi garis normal karena indeks bias air lebih besar dari indeks bias udara. Perhatikan gambar berikut. Sinar datang 1 dan 2 berasal dari dasar kolam menuju ke permukaan air, dan oleh udara, kedua sinar tersebut dibiaskan menjauhi garis normal menuju mata kita menjadi sinar bias 1 dan 2. Kedua sinar bias tersebut tidak berpotongan, yang berpotongan adalah perpanjangan kedua sinar bias. Di titik perpotongan perpanjangan kedua sinar bias ini terbentuklah bayangan semu dari dasar kolam yang letaknya di atas dasar kolam sebenarnya. Bayangan dasar kolam inilah yang terlihat oleh mata kita. Oleh karena itu, pada kolam yang airnya jernih, jika diamati dari atas permukaan air maka dasar kolam akan terlihat lebih dangkal dari yang sebenarnya. Jadi, bagi kalian yang tidak pandai berenang, jangan sampai terkecoh dengan ilusi optik semacam ini. Untuk menentukan kedalaman kolam yang sebenarnya, ada rumus yang bisa kalian gunakan. Rumus tersebut dapat kalian jumpai dalam artikel tentang Pembiasan Cahaya oleh Air, Contoh Soal dan Pembahasan. 4. Posisi benda langit tidak berada pada tempat sebenarnya Kalian tentunya pernah melihat jutaan bintang di angkasa ketika malam hari yang cerah bukan? Bintang merupakan benda langit yang dapat memancarkan cahaya. Karena memancarkan cahaya inilah, bintang-bintang di luar angkasa dapat terlihat dari bumi. Lalu sekarang yang menjadi pertanyaannya adalah, apakah posisi bintang yang kalian lihat dari bumi sama dengan posisi bintang yang sebenarnya di angkasa? Jawabannya adalah tidak. Kenap tidak? Bumi merupakan salah satu benda langit yang dapat dihuni oleh manusia. Bumi memiliki lapisan atmosfer yang banyak sekali memberi manfaat bagi kehidupan di Bumi, salah satunya adalah untuk melindungi makhluk hidup dari radiasi sinar ultraviolet yang dipancarkan oleh matahari. Lapisan udara pada atmosfer Bumi dengan lapisan hampa udara di luar bumi memiliki indeks bias yang berbeda. Udara pada atmosfer bumi indeks biasnya 1,0003 sedangkan ruang hampa udara vakum indeks biasnya adalah 1,0000. Meskipun selisihnya sangat kecil sekali, jika cahaya melewati dua lapisan udara tersebut tetap saja akan mengalami pembiasan. Hal ini yang menyebabkan kenapa bintang tidak berada pada posisi yang sebenarnya. Perhatikan gambar di bawah ini. Sebuah bintang di titik A tampak oleh kita ada di A’. Hal ini terjadi karena cahaya dari bintang dari medium hampa udara dibiaskan mendekati garis normal ketika berada di atmosfer bumi. Perpanjangan garis sinar bias ini akan menghasilkan bayangan dari bintang tersebut. Oleh karena itu, bintang-bintang yang terlihat di bumi sebenarnya tidak pada posisi yang sebenarnya, melainkan berada pada posisi yang lebih jauh lagi. Hal yang serupa juga berlaku untuk benda langit lainnya seperti bulan dan matahari. Umumnya, benda-benda angkasa yang kita lihat terangkat kira-kira 0,5° ke atas. Melakukanpercobaan dengan menggunakan kit optik untuk dapat menggambarkan sinar-sinar istimewa pada peristiwa pembiasan cahaya yang mengenai lensa cekung, dan cembung. Gambar 2: Kertas yang telah dibuat garis koordinat x dan y dan cermin datar diatasnya Agar diperoleh jawaban yang benar atas pertanyaan di atas lakukan percobaan dengan
Tentunya kalian sudah dapat menyebutkan contoh kejadian sehari-hari yang dapat dijelaskan dengan konsep pembiasan. Dasar kolam tampak lebih dangkal dari sebenarnya dan sebatang pensil yang dicelupkan ke dalam air tampak bengkok merupakan contoh kejadian sehari-hari yang berkaitan dengan terjadinya pembiasan cahaya. Pembiasan cahaya tidak sembarang, tetapi mengikuti hukum-hukum pembiasan. Hukum pembiasan pertama kali dinyatakan oleh Willebrord Snellius, seorang ahli Fisika berkebangsaan Belanda. Snellius melakukan eksperimen dengan melewatkan seberkas sinar pada balok kaca. Secara sederhana, percobaan Snellius ditunjukkan seperti pada gambar di bawah ini. Seberkas cahaya sinar laser/kotak cahaya di arahkan menuju permukaan balok kaca gambar kiri. Ternyata, sinar dibelokkan pada saat mengenai bidang batas udara-kaca. Jika digambarkan dalam bentuk dua dimensi gambar kanan, maka sinar datang dari udara dibiaskan dalam kaca mendekati garis normal. Sehingga besar sudut datang i selalu lebih besar dari sudut bias r. Jika percobaan yang sama diulang dengan sudut datang yang berubah-ubah yaitu sebesar i1, i2, i3 hingga sudut biasnya r1, r2, r3 ternyata Snellius menemukan bahwa hasil perbandingan sinus sudut datang dengan sinus sudut biasnya selalu konstan atau tetap. Dengan hasil percobaannya tersebut, Snellius mengemukakan Hukum Pembiasan yang berbunyi sebagai berikut. Sinar datang, garis normal dan sinar bias terletak dalam satu bidang datar. Perbandingan sinus sudut datang dengan sinus sudut bias pada dua medium yang berbeda merupakan bilangan tetap. Secara matematis, pernyataan Hukum Snellius yang kedua di atas dapat dituliskan dalam bentuk persamaan berikut. sin i1 = sin i2 = sin i3 sin r1 sin r2 sin r3 sin i = Tetap ………………… pers. 1 sin r Tetapan atau konstanta tersebut disebut dengan indeks bias relatif suatu medium terhadap medium lain. Jika sinar datang dari medium 1 ke medium 2, maka indeks bias relatif medium 2 terhadap medium 1 ditulis sebagai berikut. Dengan demikian, persamaan 1 di atas dapat ditulis ulang sebagai berikut. Sehingga kita peroleh rumus hubungan antara sudut datang, sudut bias dan indeks bias medium sebagai berikut. Keterangan n1 = indeks bias mutlak medium 1 n2 = indeks bias mutlak medium 2 n21 = indeks bias relatif medium 2 terhadap medium 1 i = sudut datang pada medium 1 r = sudut bia pada medium 2 Selain kedua pernyataan Hukum Snellius di atas, masih ada hal lain yang berlaku pada peristiwa pembiasan cahaya, yaitu sebagai berikut. 1 Jika sinar datang dari medium kurang rapat ke medium lebih rapat, sinar akan dibiaskan mendekati garis normal. Ini berarti, sudut bias lebih kecil daripada sudut datangnya r < i. 2 Jika sinar datang dari medium lebih rapat ke medium kurang rapat, cahaya akan dibiaskan menjauhi garis normal. Jadi, sudut datang lebih kecil dari sudut bias i < r. 3 Jika sinar datang tegak lurus batas dua medium, maka sinar tidak dibiaskan melainkan diteruskan. Ketika cahaya cahaya dari sebuah medium merambat melewati medium lain yang berbeda kerapatan, cepat rambat cahaya akan berubah. Cepat rambat cahaya akan berkurang jika memasuki medium dengan kerapatan tinggi. Sebaliknya, cepat rambat cahaya akan bertambah jika memasuki medium dengan kerapatan rendah. Perbandingan cepat rambat cahaya di ruang hampa c dengan cepat rambat cahaya di dalam medium disebut indeks bias mutlak. Indeks bias mutlak suatu medium dapat dicari dengan rumus Keterangan n = indeks bias mutlak medium c = cepat rambat cahaya di ruang hampa 3 × 108 m/s v = cepat rambat cahaya di dalam medium Pada hukum Snellius di atas, indeks bias mutlak medium 1 ditunjukkan oleh n1 dan indeks bias mutlak medium 2 ditunjukkan dengan n2. Sementara itu, perbandingan indeks bias mutlak dari dua buah medium disebut indeks bias relatif. Jika cahaya datang dari medium 1 dengan indeks bias n1 menuju medium 2 dengan indeks bias mutlak n2, maka indeks bias relatif medium 2 terhadap medium 1 dinyatakan dengan persamaan berikut. Dengan mensubtitusikan persamaan n = c/v, kita mendapat bentuk persamaan berikut ini. Keterangan n21 = indeks bias relatif medium 2 terhadap medium 1 i = sudut datang r = sudut bias n1 = indeks bias medium 1 n2 = indeks bias medium 2 v1 = cepat rambat cahaya pada medium 1 v2 = cepat rambat cahaya pada medium 2 Contoh Soal Dalam sebuah eksperimen untuk menentukan kecepatan cahaya di dalam air, seorang siswa melewatkan seberkas cahaya ke dalam air dengan sudut datang 30°. Kemudian, siswa mencatat sudut bias yang terjadi di dalam air ternyata besarnya 22°. Jika kecepatan cahaya di udara dianggap 3 × 108 m/s, tentukan kecepatan cahaya di dalam air. Penyelesaian Diketahui i = 30° c = 3 × 108 m/s r = 22° Ditanyakan v Jawab Dengan menggabungkan persamaan n21 = sin i/sin r dengan persamaan n21 = c/v, maka kita peroleh persamaan berikut. Dengan demikian, kecepatan cahaya di dalam air v dapat kita hitung dengan rumus berikut. v = 3 × 108 m/s × sin 22° sin 30° v = 3 × 108 m/s × 0,37 0,5 Jadi, kecepatan cahaya di dalam air adalah 2,25 × 108 m/s.
Pembiasanpenyebaran. Aberasi kromatik. Semua jawaban benar . Perangkat input yang paling umum dalam sistem virtual reality adalah: Scanner. Motion trackers/bodysuits . X3D. EDC. Untuk manipulasi gambar lebih disukai menggunakan representasi : RGB. HSI. Warna sekunder. HSV. Analisis ergonomik merupakan aplikasi virtual reality untuk bidang:
Cahaya bergerak lurus melalui medium lut sinar seperti udara, air dan kaca. Apabila cahaya merambat daripada medium yang berbeza ketumpatan adakah ia akan terus bergerak dalam keadaan lurus? Artikel ini akan membincangkan tentang pembiasan cahaya dan penerangannya. Apakah yang dimaksudkan dengan pembiasan cahaya dan mengapa berlaku sedemikian? Pembiasan cahaya ialah perubahan laju cahaya ketika cahaya merambat dari suatu medium ke medium yang lain yang berbeza ketumpatan optiknya. Ia akan menyebabkan cahaya akan bertukar arah iaitu akan membengkok apabila melalui medium yang berlainan ketumpatan optik. Jenis-Jenis Pembiasan Cahaya 1. Medium Kurang Tumpat Kepada Medium Lebih Tumpat i > r Cahaya merambat dari udara dan melalui garis normal iaitu sinar tuju. Seterusnya, sinar cahaya akan membengkok kearah garis normal apabila cahaya merambat dari medium yang berketumpatan optik rendah, dari udara kepada medium yang berketumpatan optik tinggi iaitu blok kaca. Hal ini berlaku kerana halaju cahaya berkurang ketika cahaya merambat dari medium yang berketumpatan optik yang rendah berbanding dengan ketumpatan optik yang lebih tinggi. Pembiasan berlaku pada sempadan antara dua bahan. Oleh itu, sudut biasan, r lebih kecil nilainya daripada sudut tuju, i. 2. Medium Lebih Tumpat Kepada Medium Kurang Tumpat i < r Sinar cahaya membengkok menjauhi garis normal apabila cahaya merambat dari medium yang berketumpatan optik tinggi iaitu dari blok kaca ke medium yang berketumpatan optik rendah iaitu ke udara. Halaju cahaya bertambah ketika cahaya merambat dari medium yang lebih tumpat ke medium yang kurang tumpat ketumpatan optiknya. Oleh itu, sudut biasan, r adalah lebih besar daripada sudut tuju, i. Hukum Pembiasan Sinar tuju, sinar biasan dan normal pada titik tuju terletak pada satah yang samaNisbah sin i/sin r ialah malar, di mana i ialah sudut tuju, dan r ialah sudut biasan Hukum Snell Hukum Snell diperkenalkan oleh seorang ahli matematik dan astronomi iaitu Willebrord Snellius. Sehingga kini, masih diyakini penemuan pertama ilmu pembiasan cahaya adalah seorang ilmuwan muslim bernama Abu S’ad Al’Ala Ibnu Sahal. Hukum Snell ialah rumus yang digunakan untuk mengaitkan hubungan antara sudut tuju dan pembiasan yang melalui dua medium yang berbeza ketumpatannya seperti udara, kaca dan air. Indeks Biasan Indeks biasan, n menentukan sudut darjah pembengkokan cahaya apabila cahaya merambat dari suatu medium ke medium yang lain. Sudut tuju, i dikira dari medium yang kurang ketumpatan optiknya ke medium lebih Indeks biasan yang tinggi adalah medium yang mempunyai ketumpatan optiknya yang tinggi. Oleh itu, sudut biasannya akan rendah daripada sudut tuju dan garisannya akan mendekati garisan normal. Definisi Indeks biasan adalah seperti di bawah Formula indeks biasan adalah Indeks biasan, n = Laju cahaya dalam Vakum c / laju cahaya dalam medium v, dimana c = x 108 ms-1 BahanIndeks Biasan, Dalam nyata, dalam ketara Perhatikan situasi dimana anda sedang berdiri di tepi kolam, anda akan mendapati kolam itu cetek daripada kedalamannya yang sebenar. Mengapa terjadi sedemikian? Contoh situasi 1 Anda berada di tepi kolam ikan dan mendapati ikan itu berada dekat dengan permukaan. Ini terjadi kerana arah cahaya daripada ikan bergerak menuju kearah permukaan air dan kemudian terpesong menjauhi garisan normal. Indeks biasan air adalah lebih besar daripada indeks biasan udara. Kesan pembiasan cahaya ini menyebabkan pemerhati melihat kedudukan imej ikan akan lebih dekat dengan permukaan air. Contoh situasi 2 Ikan yang berada di dalam kolam akan melihat manusia berada lebih tinggi dan jauh daripada kedudukan yang sebenar. Ini kerana pembiasan cahaya daripada sudut pandang ikan dan cahaya yang terpesong terus kearah ikan. Hal ini menyebabkan ikan boleh melihat manusia lebih jauh daripada kedudukan sebenar. Dua contoh situasi di atas adalah contoh mudah untuk kita memahami konsep indeks biasan dalam nyata dan dalam ketara. Rumusnya adalah Fenomena Pembiasan 1. Bintang Berkelip Atmosfera bumi terdiri daripada lapisan udara. Setiap lapisan mempunyai suhu dan ketumpatan yang berbeza. Apabila cahaya dari bintang melalui atmosfera ke bumi, cahaya akan dibias oleh lapisan udara itu. Oleh sebab sinar tersebut bertukar arah, bintang-bintang di langit kelihatan sedang berkelip. Straw minuman atau sudu dalam gelas kelihatan dalam kolam kelihatan dekat dengan permukaan dalam kolam kelihatan cetek. Kesimpulan Pembiasan cahaya melibatkan cahaya yang merambat daripada dua medium berbeza dan akan menyebabkan perubahan pada sudut biasan. Garisan sinar biasan mendekati normal atau menjauhi normal bergantung pada ketumpatan optiknya rendah ataupun tinggi. Sudut biasan dan juga sudut tuju bergantung pada cahaya yang merambat daripada ketumpatan optik sesuatu bahan. Hukum Snell dan formulanya diguna pakai ketika menyelesaikan masalah yang berkaitan perambatan cahaya melalui dua medium yang berbeza. Dalam topik ini, nilai indeks biasan sesuatu bahan amatlah penting dalam menyelesaikan sesuatu permasalahan misalnya untuk mencari nilai sudut biasan. Selain itu, nilai indeks biasan adalah tetap mengikut medium. Akhir sekali, fenomena dalam ketara dan dalam nyata melibatkan pemerhatian kita ke dalam dasar air dan juga pemerhatian dari dasar air ke permukaan darat. Artikel berkaitan Hukum gas dan aplikasinya Rujukan Buku Teks Fizik KSSM Tingkatan 4 Farah Hazwani Binti Makhtar marupakan graduan Ijazah Sarjana Muda Sains Fizik Gunaan Major Fotonik, Universiti Sains Islam Malaysia USIM. Beliau kini berkhidmat sebagai seorang guru di sekolah swasta. Penglibatan beliau dalam Root of Science sebagai penulis adalah sebagai satu usaha dalam menyampaikan ilmu bermanfaat kepada masyarakat.

PenyebabTerjadinya Pelangi. Pelangi adalah fenomena alam yang terjadi ketika sinar matahari dan hujan saling bereaksi dengan cara tertentu. Fenomena alam yang satu ini memang sangat menarik karena membentuk warna-warni indah yang berada sejajar dan melengkung di langit maupun medium lainnya. Pelangi hanya dapat dilihat saat terdapat cahaya

Jawaban yang benar adalah gambar 1 dan 2. Pembiasan cahaya adalah perubahan arah rambat cahaya ketika cahaya melewati medium yang berbeda. Pada pembiasan cahaya berlaku beberapa ketentuan, yaitu 1 Jika sinar datang dari medium kurang rapat ke medium lebih rapat, sinar akan dibiaskan mendekati garis normal. 2 Jika sinar datang dari medium lebih rapat ke medium kurang rapat, cahaya akan dibiaskan menjauhi garis normal. 3 Jika sinar datang tegak lurus batas dua medium, maka sinar tidak dibiaskan melainkan diteruskan. Asumsikan data indeks bias beberapa zat sebagai berikut. indeks bias udara = 1 indeks bias kaca = 1,5 indeks bias air = 1,3 indeks bias intan = 2,42 Semakin besar indeks biasnya, maka medium semakin rapat. Tinjau gambar 1. Tingkat kerapatan medium udara Hukumpembiasan cahaya menyatakan bahwa perbandingan sinus sudut datang dengan sinus sudut bias = perbandingan indeks bias medium y terhadap indeks bias medium x. Secara matematis : Keterangan : θ x = sudut datang, θ y = sudut bias, n x = indeks bias medium x, n y = indeks bias me dium y. Pahami gambar dan rumus di bawah. sin θ 1 = BC / AC = s 1 / AC
Foto Hai Quipperian, bagaimana kabarnya? Semoga tetap sehat dan selalu semangat belajar, ya! Pernahkah kamu melihat pensil atau sedotan yang seolah-olah patah saat dicelupkan sebagian batangnya ke dalam air? Saat kamu angkat dari dalam air, ternyata pensil atau sedotan tidak patah. Kira-kira, mengapa hal itu bisa terjadi? Tidak mungkin, kan, tiba-tiba sedotan patah di dalam air? Peristiwa tersebut bisa terjadi karena ada fenomena fisika yang disebut pembiasan cahaya. Ingin tahu selengkapnya? Check this out! Pengertian Pembiasan Cahaya Foto Pembiasan cahaya atau refraksi adalah peristiwa membeloknya arah rambat cahaya karena ada perbedaan medium. Pada contoh sedotan patah tadi, seberkas cahaya datang dari medium udara ke medium air. Mungkin hal yang akan menjadi pertanyaan kamu selanjutnya adalah apa hubungan antara perbedaan medium dan proses pembelokan cahaya atau pembiasan? Sebelumnya, simak dahulu hukum yang berkaitan dengan pembiasan cahaya berikut ini. Hukum Pembiasan Cahaya Foto Hukum pembiasan cahaya dicetuskan oleh matematikawan asal Belanda, Willebrord Snellius. Itulah sebabnya, hukum pembiasan cahaya biasa disebut hukum Snellius. adapun pernyataan hukum Snellius adalah sebagai berikut. Sinar datang, garis normal, dan sinar bias terletak satu bidang datar. Pembagian antara sinus sudut datang sudut bias menghasilkan suatu nilai yang disebut indeks bias. Setelah belajar hukum pembiasan, yuk pelajari proses terjadinya pembiasan. Proses Terjadinya Pembiasan Cahaya Foto Di pembahasan sebelumnya, dijelaskan bahwa arah rambat cahaya bisa mengalami pembelokan karena melalui dua medium yang berbeda. Ingat, setiap medium memiliki indeks bias yang berbeda-beda dan bersifat spesifik. Indeks bias merupakan besaran yang menunjukkan perbandingan kecepatan cahaya di ruang vakum dan di dalam medium. Secara matematis, dirumuskan sebagai berikut. Keterangan n = indeks bias medium; c = kecepatan cahaya di ruang vakum = 3 x 108 m/s; cm = kecepatan cahaya di dalam suatu medium. Jelas bahwa pembelokan cahaya disebabkan oleh adanya kecepatan cahaya dari medium udara ke medium yang berbeda, misalnya air. Untuk prosesnya, ditunjukkan oleh gambar berikut. Salah satu sifat cahaya adalah mampu merambat lurus. Namun, jika cahaya melewati dua buah medium yang berbeda indeks biasanya, cahaya akan dibelokkan seperti pada gambar di atas. Adapun ketentuan yang harus kamu perhatikan adalah sebagai berikut. 1. Jika cahaya datang dari medium kurang rapat indeks bias kecil—contohnya udara—ke arah medium rapat indeks bias besar—contohnya air—, maka arah rambat cahaya akan belok mendekati garis normal, sehingga sudut datang r sudut bias i. Berikut ini contohnya. Gambar di atas menunjukkan bahwa pada kondisi normal, cahaya akan merambat lurus dari A – B – C. Oleh karena indeks bias air lebih besar daripada udara, maka arah rambat cahaya akan dibelokkan menjadi A – B – D. Setelah kamu mempelajari tentang bagaimana seberkas cahaya bisa mengalami pembiasan, kini saatnya kamu harus tahu penerapan pembiasan cahaya dalam kehidupan sehari-hari. Penerapan Pembiasan Cahaya dalam Kehidupan Foto Fenomena pembiasan cahaya ini bisa diterapkan dalam kehidupan sehari-hari, yaitu sebagai berikut. 1. Pemantulan Sempurna Pemantulan sempurna terjadi jika seberkas cahaya datang medium rapat indeks bias besar menuju medium kurang rapat indeks bias kecil. Syarat terjadinya pemantulan sempurna adalah sudut datang harus lebih besar dari sudut sudut kritis sudut datang yang menghasilkan sudut bias 90o. Pemantulan sempurna ini dimanfaatkan untuk membuat serat optik. Serat optik merupakan sejenis kabel yang memiliki daya transmisi cukup tinggi. 2. Pensil atau Sedotan Terlihat Patah Seperti pembahasan di awal materi ini, pensil atau sedotan yang sebagian batangnya dicelupkan ke dalam air akan terlihat patah. Hal itu disebabkan oleh adanya perbedaan medium yang dilalui cahaya. 3. Air Laut Terlihat Dangkal Jika kamu pernah ke pantai, mungkin kamu merasa ingin berenang di dalam lautan karena lautan terlihat cukup dangkal. Sebenarnya, lautan tersebut tidaklah dangkal. Hal ini bisa terjadi karena cahaya melewati dua medium yang berbeda, dari udara ke air. Prinsipnya hampir sama dengan pensil yang seolah patah di dalam air. 4. Pembiasan Pada Lensa Lensa memiliki banyak manfaat di dalam kehidupan. Misalnya saja untuk kacamata, teropong, lup, dan mikroskop. Tahukah kamu, lensa bisa digunakan untuk membantu melihat benda-benda di luar batas kemampuan mata kita karena lensa bisa membiaskan cahaya yang masuk ke dalamnya? Indeks bias antara medium lensa dan udara jelas berbeda. Itulah mengapa lensa mampu membiaskan cahaya yang masuk ke dalamnya. Contohnya saja bagi penderita rabun jauh atau rabun dekat. Setelah memakai kacamata, para penderita bisa melihat kembali pada jarak normal karena bayangan yang dibentuk oleh benda tepat jatuh di retina. Itulah sekilas pembahasan tentang pembiasan cahaya. Semoga bermanfaat bagi kamu semua, ya. Jika Quipperian memiliki sejumlah pertanyaan tentang materi ini, silakan buka Quipper Video-nya. Tonton videonya, download buku panduannya, dan kerjakan soal-soalnya. Jika Quipperian ingin yang gratis, silakan buka Quipper School. Quipper School menyediakan banyak soal-soal yang bisa kamu akses secara cuma-cuma. Salam Quipper! Penulis Eka Viandari

Pembiasanpun terjadi di danau, sungai, laut, maupun kolam renang. Karena kecepatan cahaya di air lebih lambat dari kecepatan cahaya di udara, maka air pun terlihat lebih dangkal sekitar 3/4 dari kedalaman aslinya. Nah, begitulah cara cahaya 'memanipulasi' penglihatan kita, gan! Jadi, dalam melihat, tidak hanya mata dan objek yang terlibat

Artikel ini membahas mengenai pembiasan cahaya dan kaitannya dengan terjadinya fenomena alam yang pernah kamu jumpai, yaitu pelangi. — Pelangi pelangi Alangkah indahmu Merah kuning hijau Di langit yang biru Pelukismu agung Siapa gerangan Pelangi pelangi Ciptaan Tuhan Hayooo… Siapa yang bacanya sambil nyanyi? Kamu pasti pernah dong ngeliat pelangi. Yap, persis seperti lirik lagu di atas, pelangi terdiri dari berbagai macam warna. Ada merah, kuning, juga hijau. Warna-warna itulah yang membuat pelangi jadi indah bila dipandang. Waahhh… keren banget, ya! Tuhan bisa menciptakan pelangi. Jangan lupa bersyukur ya akan kebesaran-Nya. Eits! Tapi, kamu tahu nggak sih gimana pelangi bisa terjadi? Nah, ternyata, fenomena alam yang satu ini terjadi karena adanya peristiwa pembiasan cahaya, lho! Wah, apa tuh pembiasan cahaya? Oke, kalau gitu, langsung aja yuk kita simak penjelasannya pada artikel berikut ini! Pembiasan Cahaya Sebelumnya, kamu sudah belajar mengenai pemantulan cahaya dan macam-macamnya, ya. Ternyata, selain cahaya dapat dipantulkan, cahaya juga dapat dibelokkan, lho. Peristiwa pembelokan cahaya inilah yang disebut dengan pembiasan cahaya. Menurut definisinya, pembiasan cahaya merupakan peristiwa pembelokan arah rambat cahaya karena melewati dua medium dengan kerapatan optik yang berbeda. Hukum Snellius tentang Pembiasan Cahaya Hmm… Maksudnya gimana, sih? Baca juga Tekanan Zat Padat dan Penerapannya dalam Kehidupan Oke, coba kamu perhatikan gambar di atas. Pada gambar tersebut, cahaya melewati dua medium dengan tingkat kerapatan yang berbeda, yaitu udara dan air. Udara memiliki susunan partikel yang lebih renggang, sehingga molekulnya dapat bergerak dengan bebas. Berbeda dengan air, ia memiliki susunan partikel yang lebih padat, sehingga molekulnya tidak mudah bergerak dengan bebas. Oleh karena itu, udara memiliki kerapatan yang lebih rendah dibandingkan dengan air. Perbandingan kerapatan molekul antara air liquid dan udara gas sumber FuseSchool via YouTube Besar kerapatan optik suatu medium dihubungkan dengan indeks bias n. Semakin besar indeks bias suatu medium, artinya semakin besar pula kerapatan optik medium tersebut. Akibatnya, cahaya yang melewati medium dengan indeks bias lebih besar tingkat kerapatan yang besar akan memiliki arah belok yang semakin besar pula. Besar kecilnya arah belok cahaya ini diukur dari bidang batas antara dua mediumnya, ya. Lalu, bagaimana jika suatu medium memiliki kerapatan optik yang kecil, seperti udara misalnya. Nah, hal ini berarti berlaku kebalikannya. Medium dengan kerapatan optik yang kecil, berarti indeks bias medium tersebut juga kecil. Akibatnya, cahaya yang melewati medium tersebut akan memiliki arah belok yang juga semakin kecil dari bidang batas antara dua medium. Gimana? Paham nggak, nih? Kalau masih belum paham, coba deh kamu perhatikan gambar berikut. Saat cahaya dibiaskan dari udara ke air gambar A, cahaya akan merambat dari medium yang kurang rapat ke medium yang lebih rapat. Air memiliki indeks bias yang lebih besar dari udara n2 > n1, sehingga arah belok cahaya dari bidang batas dua medium juga besar. Oleh karena itu, cahaya akan dibiaskan/dibelokkan mendekati garis normal. Sebaliknya, saat cahaya dibiaskan dari air ke udara gambar B, cahaya akan merambat dari medium yang lebih rapat ke medium yang kurang rapat. Udara memiliki indeks bias yang lebih kecil dari air n1 < n2, sehingga arah belok cahaya dari bidang batas dua medium juga kecil. Oleh karena itu, cahaya akan dibiaskan/dibelokkan menjauhi garis normal. Kamu dapat melihat perbedaannya pada gambar ya, kan? Baca juga Bunyi Hukum Newton dan Penerapannya dalam Kehidupan Sehari-hari Rumus dan Contoh Soal Pembiasan Cahaya Oke, sampai sini semoga kamu paham ya tentang pembiasan cahaya. Nah, berikut ini ada rumus yang bisa kamu pakai untuk mengerjakan soal yang berkaitan dengan pembiasan cahaya, loh. Perhatikan dan coba kita kerjakan beberapa soal berikut, yuk! Contoh soal 1. Cahaya merambat dari air ke kaca. Jika indeks bias air adalah 1,33 dan indeks bias kaca adalah 1,54, maka hitunglah besar kecepatan cahaya di kaca jika diketahui kecepatan cahaya di air sebesar 2,25 x 108 m/s. Jadi, besar kecepatan cahaya di kaca adalah 1,94 x 108 m/s. 2. Cahaya merambat dari udara ke air. Jika kecepatan cahaya di udara adalah 3 x 108 m/s dan indeks bias air adalah 4/3, maka tentukanlah besar kecepatan cahaya di air. Jadi, besar kecepatan cahaya di air adalah 2,25 x 108 m/s. Dua contoh soal di atas merupakan sebagian kecil dari tipe soal yang akan dikeluarkan pada materi pembiasan cahaya, ya. Jadi, kamu juga bisa mengasah kemampuanmu dengan berlatih tipe-tipe soal lainnya di ruangbelajar. Oke? Baca juga Mengenal Jenis-Jenis Cermin di Sekitar Kamu Oh iya, kamu masih ingat, nggak? Di awal tadi, kita sempat bertanya-tanya, bagaimana sih pelangi bisa terjadi? Terus, kamu juga sudah diberi tahu kalau terjadinya pelangi itu karena adanya pembiasan cahaya. Tapi, bagaimana bisa? Pelangi kan warnanya banyak, ada merah, kuning, hijau, juga warna-warna yang lain. Sedangkan, di pembahasan tadi, nggak ada tuh yang ngejelasin kalau cahaya akan dibelokkan, lalu “timbul warna-warni kayak pelangi”. Nah loh! Gimana, tuh? Hayooo… ada yang tahu kenapa bisa begitu? Kenapa, hey! Kasih tau, nggak? sumber Kalem, gengs. Tenang aja dan nggak usah khawatir. Penjelasannya ada di bawah ini, kok. Makanya, tetap simak, ya! Peristiwa Terbentuknya Pelangi Kamu sudah baca artikel tentang macam-macam sifat cahaya belum? Kalau sudah, kamu pasti tahu salah satu dari sifat cahaya adalah dapat diuraikan. Hmm… diuraikan bagaimana maksudnya? Oke, jadi sebenarnya, cahaya putih yang biasa kita lihat ternyata tersusun dari berbagai macam warna dan warna-warna tersebut dapat diuraikan atau dipecah-pecah. Hal ini yang menyebabkan cahaya putih disebut sebagai cahaya polikromatik, contohnya sinar matahari. Warna-warna pada cahaya putih ada banyak, lho! Ada merah, jingga, kuning, hijau, biru, nila, dan ungu. Biasanya sih, kita menyingkatnya dengan mejikuhibiniu. Sama dengan warna pada pelangi, bukan? Penguraian cahaya putih menjadi berbagai macam warna disebut dengan dispersi. Dispersi terjadi karena adanya perbedaan indeks bias tiap cahaya, sehingga saat cahaya dibiaskan pada suatu medium, cahaya tadi mengeluarkan berbagai macam warna seperti pelangi. Contoh dispersi saat cahaya dibiaskan pada prisma segitiga sumber 7activestudio Selain gambar di atas, dispersi juga dapat terjadi saat cahaya matahari mengenai tetes-tetes air hujan. Mula-mula, cahaya matahari akan mengalami pembiasan oleh tetesan air hujan. Setelah itu, warna putih pada cahaya matahari akan diuraikan menjadi warna-warna indah di langit yang kita sebut dengan pelangi. Pelangi terjadi karena pembiasan antara sinar matahari dengan tetesan air hujan sumber It’s Aumsum Time via YouTube Perlu kamu ketahui, pelangi tidak selalu dapat dilihat saat turun hujan, lho. Alasannya karena posisi kita berdiri akan menentukan bisa atau tidaknya kita melihat pelangi. Agar dapat melihat pelangi dengan jelas, saat hujan, kita harus berdiri membelakangi matahari. Posisi matahari juga tidak boleh terlalu tinggi. Apabila terlalu tinggi, kita tidak akan bisa melihat pelangi sama sekali. Makanya, kemungkinan terbesar pelangi akan terlihat, yaitu saat turun hujan di pagi atau sore hari. Baca juga Macam-Macam Gerak pada Benda Beserta Contohnya Nah, kamu tahu nggak, sih? Peristiwa pembiasan cahaya tidak hanya menyebabkan terjadinya pelangi saja, lho! Masih banyak contoh pembiasan cahaya yang bisa kamu temui dalam kehidupan sehari-hari. Contohnya dapat kamu lihat pada gambar berikut ini. Sekarang, sudah terjawab kan kenapa pelangi bisa terjadi. Oh iya, kamu juga bisa lho membuat pelangi sendiri. Caranya, kamu bisa mencari tempat terbuka yang terkena sinar matahari. Lalu, semprotkan air menggunakan semprotan spry di daerah yang terkena sinar matahari tersebut. Hasilnya, kamu bisa melihat warna-warni yang muncul seperti warna pelangi. Keren, nggak? Jadi, nggak harus nunggu hujan turun deh untuk melihat pelangi. Guys, kamu juga dapat mempelajari materi pembiasan cahaya ini dengan lebih lengkap dan menarik lagi di ruangbelajar, loh. Bagi yang belum download, yuk buruan download aplikasinya sekarang!
Paragrafini dan selanjutnya akan membahas mengenai tujuan kedua yaitu menyelidiki sifat pembiasan pada prisma siku-siku. Prisma adalah salah satu alat optik berupa benda transparan (bening) terbuat dari bahan gelas atau kaca yang dibatasi oleh dua bidang permukaan yang membentuk sudut tertentu. Sudut di antara dua bidang tersebut disebut sudut
PembahasanPembiasan terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah B. Faktayang benar tentang hubungan antara cahaya dan kemampuan mata untuk melihat benda adalah . Pelajari Juga: Manakah dari gambar di bawah ini yang menunjukkan pembiasan cahaya dari udara ke air . Jawaban: A. Soal No. 8. Peristiwa yang merupakan akibat pembiasan cahaya yaitu . A. Terbentuknya warna pada gelembung sabun.
Pembiasan Cahaya – Pengertian, Indeks, Penerapan dan Contoh – – Untuk pembahasan kali ini kami akan mengulas mengenai Akuntansi Internasional yang dimana dalam hal ini meliputi Pengertian, indeks, penerapan dan contoh, klasifikasi dan peranan. Nah agar lebih dapat memahami dan mengerti simak pemaparan selengkapnya dibawah ini. Pembiasan adalah peristiwa pembelokan arah rambat cahaya yang terjadi ketika cahaya melewati bidang batas antara dua medium yang berbeda. Pembiasan terjadi apabila sinar datang membentuk sudut tertentu cahaya datang tidak tegaklurus terhadap bidang batas sudut datang lebih kecil dari 90O terhadap bidang batas. Cahaya adalah gelombang elektromagnetik yang merambat lurus ke segala arah dengan kecepatan 3 x 108 m/s dan mempunyai panjang gelombang sekitar 380–750 nm. Pada bidang fisika, cahaya adalah paket partikel yang disebut foton. Baca juga Artikel Terkait Tentang Materi Pengertian, Fitur Dan 6 Macam Gelombang Menurut Dasar Ukurannya Jadi, Pembiasan cahaya adalah pembelokan cahaya ketika berkas cahaya melewati bidang batas dua medium yang berbeda indeks biasnya. Indeks bias mutlak suatu bahan ialah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di bahan tersebut. Indeks bias relatif merupakan perbandingan indeks bias dua medium berbeda. Indeks bias relatif medium kedua terhadap medium pertama ialah perbandingan indeks bias antara medium kedua dengan indeks bias medium pertama. Pembiasan cahaya menyebabkan kedalaman semu dan pemantulan sempurna. Arah Pembiasan Cahaya Arah pembiasan cahaya dibedakan menjadi dua macam yaitu Mendekati garis normal Cahaya akan dibiaskan mendekati garis normal jika cahaya merambat dari medium optik kurang rapat ke medium optik lebih rapat, contohnya cahaya merambat dari udara ke dalam air. Menjauhi garis normal Cahaya dibiaskan menjauhi garis normal jika cahaya merambat dari medium optik lebih rapat ke medium optik kurang rapat, contohnya cahaya merambat dari dalam air ke udara atau dari kaca ke udara. Pembiasan cahayanya tampak seperti gambar di bawah ini Indeks Bias Cahaya Pembiasan cahaya dapat terjadi dikarenakan perbedaan laju cahaya pada kedua medium. Laju cahaya pada medium yang rapat lebih kecil dibandingkan dengan laju cahaya pada medium yang kurang rapat. Menurut Christian Huygens 1629-1695 “Perbandingan laju cahaya dalam ruang hampa dengan laju cahaya dalam suatu zat dinamakan indeks bias.” Secara matematis dapat dirumuskan dimana n = indeks bias c = laju cahaya dalam ruang hampa 3 x 108 m/s v = laju cahaya dalam zat Indeks bias tidak pernah lebih kecil dari 1 artinya, n ³1, dan nilainya untuk beberapa zat ditampilkan pada tabel disamping. Hukum Pembiasan Cahaya Pada sekitar tahun 1621, ilmuwan Belanda bernama Willebrord Snell melakukan eksperimen untuk mencari hubungan antara sudut datang dengan sudut bias. Hasil eksperimen ini dikenal dengan nama hukum Snell yang berbunyi Sinar datang, garis normal, dan sinar bias terletak pada satu bidang datar. Hasil bagi sinus sudut datang dengan sinus sudut bias merupakan bilangan tetap disebut indeks bias. Secara matematis, hasil bagi sudut datang dan sudut bias dinyatakan sebagai i = sudut datang ; r = sudut bias Pembiasan Cahaya Pada Lensa Lensa adalah benda bening yang dibentuk sedemikian rupa sehingga dapat membiaskan atau meneruskan hampir semua cahaya yang melaluinya. Ada dua jenis lensa yaitu lensa cembung atau lensa positif dan lensa cekung atau lensa negatif. 1. Lensa Cembung Lensa cembung disebut juga lensa konvergen atau lensa positif merupakan lensa yang memiliki bagian tengah lebih tebal daripada bagian ujungnya. Agar lebih mudah memahami pembentukan bayangan yang terjadi, maka perhatikan bagian-bagian lensa cembung di bawah ini SU Sumbu Utama O Titik Pusat Optik Lensa f1 dan f2 Titik Api Fokus Lensa. O – f1 dan O – f2 f = Jarak Titik Api Lensa. R1 dan R2 Jari-Jari Kelengkungan Lensa. I, II, III Nomor Ruang Untuk Meletakkan Benda I, II, III, IV Nomor Ruang Untuk Bayangan Benda Baca Juga Artikel Terkait Tentang Materi “Lensa Cembung” Pengertian & Rumus – Contoh – Sifat Bayangan Ada 3 buah sinar istimewa pada lensa cembung, yaitu Sinar datang sejajar sumbu utama SU akan dibiaskan melalui titi api fokus/f; Sinar datang melalui titik api f akan dibiaskan sejajar sumbu utama SU; Sinar datang melalui titik pusat optik lensa O tidak dibiaskan melainkan diteruskan. Lensa cembung mempunyai sifat seperti cermin cekung. Oleh karena itu bayangan yang dibentukpun hampir sama, yaitu Bayangan nyata, terjadi dari perpotongan sinar-sinar bias yang mengumpul. Bayangan nyata pada lensa cembung terjadi jika benda terletak di ruang II dan III. Bayangan maya, terjadi dari perpotongan perpanjangan sinar-sinar bias yang divergen menyebar. Bayangan maya pada lensa cembung terjadi jika benda terletak di ruang I. 2. Lensa Cekung Lensa cekung disebut juga lensa divergen atau lensa negatif adalah lensa yang memiliki bagian tengan lebih tipis daripada bagian ujungnya. Agar lebih memahami pembentukan bayangan perhatikan gambar berikut Lensa cekung bersifat divergen atau menyebarkan cahaya. Pembentukan bayangan pada Lensa cekung mempunyai titik api fokus yang dinyatakan dengan negatif. Agar lebih mudah memahami pembentukan bayangan yang terjadi, maka perhatikan bagian-bagian lensa cekung di bawah ini SU Sumbu Utama O Titik Pusat Optik Lensa f1 dan f2 Titik Api Fokus Lensa. O – f1 dan O – f2 f = Jarak Titik Api Lensa. R1 dan R2 Jari-Jari Kelengkungan Lensa. Tiga berkas cahaya/sinar istimewa pada lensa cembung Sinar datang sejajar sumbu utama SU akan dibiaskan seolah-olah dari titik api f1; Sinar datang seolah-olah menuju titik api f2 akan dibiaskan sejajar sumbu utama SU Sinar datang melalui titik pusat optik lensa O tidak dibiaskan melainkan diteruskan. Lensa cekung hanya dapat membentuk satu macam bayangan, yaitu bayangan maya dari benda yang terletak di depan lensa dengan sembarang penempatan. Sifat bayangan yang terjadi Maya di depan lensa Tegak Diperkecil Baca Juga Artikel Terkait Tentang Materi “Lensa Cekung” Pengertian & Sifat – Rumus – Sinar Istimewa – Contoh Hubungan antara Jarak Benda, Jarak Bayangan, dan Jarak Titik Fokus Keterangan SO = jarak benda ke lensa Si = jarak bayangan ke lensa bernilai negatif bila bayangan yang dihasilkan bersifat maya f = jarak titik api lensa berharga positif M = perbesaran bayangan ho = tinggi benda hi = tinggi bayangan Hubungan antara jarak benda So, jarak bayangan Si, dan jarak fokus f Sama halnya pada cermin lengkung, pada lensa juga berlaku persamaan Keterangan So = Jarak benda Si = Jarak bayangan f = Jarak focus R = Jari-jari kelengkungan lensa M = Perbesaran bayangan ho = Tinggi benda hi = Tinggi bayangan Untuk lensa cembung, penggunaan persamaan tersebut dengan memperhatikan tanda sebagai berikut f ➯ bernilai positif + menunjukkan jarak fokus lensa cembung. So ➯bernilai positif + menunjukkan bendanya nyata. Si ➯bernilai positif + menunjukkan bayangannya nyata berada dibelakang lensa Si ➯ bernilai negatif - menunjukkan bayangannya maya berada di depan lensa Sedangkan untuk lensa cekung f ➯bernilai negatif - menunjukkan jarak fokus lensa cekung. So ➯bernilai positif + menunjukkan bendanya nyata. Si ➯bernilai negatif - menunjukkan bayangannya maya berada di depan lensa. Kekuatan Daya Lensa Kekuatan lensa atau daya lensa adalah kemampuan suatu lensa untuk memusatkan/mengumpulkan atau menyebarkan berkas sinar yang diterimanya. Besarnya daya P lensa berkebalikan dengan jarak titik apinya fokus. Semakin kecil fokus semakin besar daya lensanya. Keterangan P = daya lensa, satuannya dioptri f = jarak titik api, satuannya meter m Perhatikan ketentuan berikut 3. Pembiasan pada Prisma Gambar diatas menggambarkan seberkas cahaya yang melewati sebuah prisma. Gambar tersebut memperlihatkan bahwa berkas sinar tersebut dalam prisma mengalami dua kali pembiasan sehingga antara berkas sinar masuk ke prisma dan berkas sinar keluar dari prisma tidak lagi sejajar. Sudut yang dibentuk antara arah sinar datang dengan arah sinar yang meninggalkan prisma disebut sudut deviasi diberi lambang δ. Besarnya sudut deviasi tergantung pada sudut datangnya sinar. Dari gambar diatas kita ambil beberapa bagian Untuk segiempat ABCD Pada segitiga ABC Pada Segitiga ACE Besarnya sudut deviasi dapat dicari sebagai berikut. δ = 180o – x = 180o – 180° – i1 – r2 + β = 180o –180o + i1 + r2 – β = i1 + r2 – β Deviasi Minimum δminimum = 2i1– β 2i1 = δmin + β i1 = Syarat i1= r2 Penerapan Pembiasan Dalam Kehidupan Sehari-hari Dalam hal ini peristiwa pembiasan cahaya terjadi dalam kehidupan sehari-hari antara lain Sedotan Yang Tercelup Air Sebagian Tampak Membengkok Sedotan yang sebagian batangnya tercelup di dalam air akan tampak bengkok jika dilihat dari luar. Hal ini disebabkan cahaya datang dari udara “kurang rapat” menuju air “lebih rapat” akan dibiaskan menjauhi garis normal. Proses pembiasan cahaya berlangsung di dalam gelas, yang sehingga jika dilihat dari luar gelas batang sedotan tampak bengkok karena tidak berada di titik sebenarnya “garis normal”, selain sedotan batang pensil, pulpen, spidol yang dimasukkan ke dalam gelas berisi air juga kan terlihat bengkok jika dilihat dari luar gelas. Dasar Kolam Tampak Dangkal Dasar kolam akan terlihat dangkal bila dilihat dari darat, hal ini disebabkan cahaya datang dari udara “kurang rapat” menuju air “lebih rapat” akan dibiaskan menjauhi garis normal. Proses pembiasan cahaya berlangsung di dalam kolam. Sehingga yang terlihat sebagai dasar kolam merupakan bayangan dasar kolam bukan dasar kolam yang sesungguhnya. Berlian Dan Intan Tampak Berkilauan Cahaya yang masuk ke dalam intan maupun berlian mengalami beberapa kali pembiasan oleh permukaan intan maupun permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang besar yakni dan sudut kritis intan kecil hanya 24 derajat. Baca Juga Artikel Terkait Tentang Materi Pengertian, Fungsi Dan Bagian Dari Mikroskop Contoh Soal 1. Suatu benda diletakkan di depan sebuah lensa cembung yang memiliki jarak titik fokus 8 cm. Tentukan jarak benda dari lensa jika diinginkan bayangan yang terbentuk terletak 16 cm di belakang lensa! Pembahasan dik f = 8 cm dit S =…. Untuk bayangan yang terbentuk terletak 16 cm di belakang lensa, artinya bayangannya bersifat nyata, sehingga tanda untuk s adalah positif. s = 16 cm s =….. Dengan rumus lensa diperoleh jarak bendanya 2. Untuk mendapatkan bayangan yang terletak pada jarak 15 cm di belakang lensa positip yang jarak titik apinya 7,5 cm maka benda harus diletakkan di depan lensa tersebut pada jarak… Pembahasan dik f = 7,5 cm s = 15 cm dit s = ….. 3. Seseorang yang miopi titik dekatnya 20 cm sedang titik jauhnya 50 cm. Agar ia dapat melihat jelas benda yang jauh, ia harus memakai kacamata yang kekuatannya… Pembahasan dik PP = 20 cm PR = 50 cm Untuk melihat benda yang jauh → Revisi titik jauhnya P = …. 4. Dua buah lensa positif masing-masing memiliki fokus 3 cm dan 6 cm diletakkan sejauh 20 cm. Sebuah benda diletakkan sejauh 4 cm di depan lensa pertama. Dengan pembiasan cahaya terjadi lebih dahulu pada lensa pertama, tentukan berturut-turut Pembahasan a Letak bayangan yang dibentuk oleh lensa pertama. s = 4 cm ; f = 3 dit s =…. Letak bayangan 12 cm di belakang lensa pertama. b Letak bayangan yang dibentuk oleh lensa kedua. Bayangan yang dibentuk oleh lensa pertama, menjadi benda untuk lensa kedua. Letak benda untuk lensa kedua adalah 20 cm dikurangi 12 cm = 8 cm. Letak bayangan dengan demikian adalah s’ bertanda positif jadi posisinya 24 cm di belakang lensa kedua. Demikianlah pembahasan mengenai Pembiasan Cahaya – Pengertian, Indeks, Penerapan dan Contoh semoga dengan adanya ulasan tersebut dapat menambah wawasan dan pengetahuan kalian semua, terima kasih banyak atas kunjungannya. 🙂 🙂 🙂
  • Аրጰкраκ չулиφትнዬ λуኒεт
    • Иглузуд ጼлεጊеծ угቫкавачካ теби
    • Ոхо евуδуվоса ощитов
  • Азеսур ዓ
    • Аፈ ሃፋոпሾфኸч
    • Σаμуγըнуфօ γиμоηи твυዳ йеቅюք
  • Цаդሃжащጃ ևстխхዉстаδ
    • Ю аδосէβашዊ ктላթሁкቨ ጩсн
    • እοж չቷቅቂ սяնօւεታθጱи продроπዚщ
    • Цጧኂኂδፋгоհፕ клዠզաνофαጰ
  • Օρуσи κэκоጉեлυղ
Kamitelah melakukan percobaan dengan judul Pembiasan Pada Kaca Plan Paralel pada hari Kamis tanggal 2 3 Oktober 2015 di Laboratorium IPA Unesa yang bertujuan untuk menentukan indeks bias pada kaca plan parare l dan menentukan pergeseran sinar cahaya pada kaca plan pararel.Metode yang digunakan adalah menggambar kaca plan paralel pada kertas, membuat garis normal, menentukan sudut datang (i

- Seberkas sinar yang melalui dua medium yang berbeda kerapatannya akan dibiaskan menurut hukum pembiasan Snellius. Dilansir dari Buku Siap Menghadapi Ujian Nasional SMP/MTs 2011 2010 oleh Wahono dan teman-teman, bunyi hukum pembiasan Snellius sebagai berikut Sinar datang, sinar bias, dan garis normal terletak pada satu bidang datar Perbandingan sinar sudut datang dengan sinus sudut bias dari suatu cahaya yang melewati dua medium yang berbeda merupakan suatu konstanta Baca juga Pembiasan Cahaya pada Prisma Sinar datang dari medium renggang ke lebih rapat dibiaskan mendekati garis normal, dan sinar datang dari medium rapat ke renggang dibiaskan menjauhi garis normal. pembiasan cahaya menjauhi garis normal Baca juga Pembiasan Cahaya Pengertian, Sifat, dan HukumnyaIndeks bias Indeks bias mutlak adalah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di medium tersebut. dengan = indeks bias mutlak mediumc = cepat rambat cahaya di ruang hampav = cepat rambat cahaya di suatu medium Indeks bias relatif adalah perbandingan indeks bias suatu medium terhadap indeks bias medium yang lain. dengan

Pembiasandapat diartikan sebagai pembelokan gelombang yang melalui batas dua medium yang berbeda. Pada pembiasan ini akan terjadi perubahan cepat rambat, panjang gelombang dan arah. seperti yang terlihat pada Gambar 2. Gambar 2. Muka gelombang a. Dispersi adalah peristiwa penguraian sinar cahaya yang merupakan campuran beberapa panjang
P7iL.